18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic macular edema (DME) and diabetic retinopathy (DR) are complications affecting about 25% of all patients with long-standing type 1 and type 2 diabetes mellitus and are a major cause of significant decrease in vision and quality of life. Age-related macular degeneration (AMD) is not uncommon, and diabetes mellitus affects the incidence and progression of AMD through altering hemodynamics, increasing oxidative stress, accumulating advanced glycation end products, etc. Recent studies suggest that DME, DR and AMD are inflammatory conditions characterized by a breakdown of the blood-retinal barrier, inflammatory processes and an increase in vascular permeability. Key factors that seem to have a dominant role in DME, DR and AMD are angiotensin II, prostaglandins and the vascular endothelial growth factor and a deficiency of anti-inflammatory bioactive lipids. The imbalance between pro- and anti-inflammatory eicosanoids and enhanced production of pro-angiogenic factors may initiate the onset and progression of DME, DR and AMD. This implies that bioactive lipids that possess anti-inflammatory actions and suppress the production of angiogenic factors could be employed in the prevention and management of DME, DR and AMD.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.

          Adiponectin is a novel, adipose-specific protein abundantly present in the circulation, and it has antiatherogenic properties. We analyzed the plasma adiponectin concentrations in age- and body mass index (BMI)-matched nondiabetic and type 2 diabetic subjects with and without coronary artery disease (CAD). Plasma levels of adiponectin in the diabetic subjects without CAD were lower than those in nondiabetic subjects (6.6+/-0.4 versus 7.9+/-0.5 microg/mL in men, 7.6+/-0.7 versus 11.7+/-1.0 microg/mL in women; P<0.001). The plasma adiponectin concentrations of diabetic patients with CAD were lower than those of diabetic patients without CAD (4.0+/-0.4 versus 6.6+/-0.4 microg/mL, P<0.001 in men; 6.3+/-0.8 versus 7.6+/-0. 7 microg/mL in women). In contrast, plasma levels of leptin did not differ between diabetic patients with and without CAD. The presence of microangiopathy did not affect the plasma adiponectin levels in diabetic patients. Significant, univariate, inverse correlations were observed between adiponectin levels and fasting plasma insulin (r=-0.18, P<0.01) and glucose (r=-0.26, P<0.001) levels. In multivariate analysis, plasma insulin did not independently affect the plasma adiponectin levels. BMI, serum triglyceride concentration, and the presence of diabetes or CAD remained significantly related to plasma adiponectin concentrations. Weight reduction significantly elevated plasma adiponectin levels in the diabetic subjects as well as the nondiabetic subjects. These results suggest that the decreased plasma adiponectin concentrations in diabetes may be an indicator of macroangiopathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A central role for inflammation in the pathogenesis of diabetic retinopathy.

            Diabetic retinopathy is a leading cause of adult vision loss and blindness. Much of the retinal damage that characterizes the disease results from retinal vascular leakage and nonperfusion. Diabetic retinal vascular leakage, capillary nonperfusion, and endothelial cell damage are temporary and spatially associated with retinal leukocyte stasis in early experimental diabetes. Retinal leukostasis increases within days of developing diabetes and correlates with the increased expression of retinal intercellular adhesion molecule-1 (ICAM-1) and CD18. Mice deficient in the genes encoding for the leukocyte adhesion molecules CD18 and ICAM-1 were studied in two models of diabetic retinopathy with respect to the long-term development of retinal vascular lesions. CD18-/- and ICAM-1-/- mice demonstrate significantly fewer adherent leukocytes in the retinal vasculature at 11 and 15 months after induction of diabetes with STZ. This condition is associated with fewer damaged endothelial cells and lesser vascular leakage. Galactosemia of up to 24 months causes pericyte and endothelial cell loss and formation of acellular capillaries. These changes are significantly reduced in CD18- and ICAM-1-deficient mice. Basement membrane thickening of the retinal vessels is increased in long-term galactosemic animals independent of the genetic strain. Here we show that chronic, low-grade subclinical inflammation is responsible for many of the signature vascular lesions of diabetic retinopathy. These data highlight the central and causal role of adherent leukocytes in the pathogenesis of diabetic retinopathy. They also underscore the potential utility of anti-inflammatory treatment in diabetic retinopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions.

              Breakdown of the inner endothelial blood-retinal barrier (BRB), as occurs in diabetic retinopathy, age-related macular degeneration, retinal vein occlusions, uveitis and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing loss of vision. The central mechanism of altered BRB function is a change in the permeability characteristics of retinal endothelial cells caused by elevated levels of growth factors, cytokines, advanced glycation end products, inflammation, hyperglycemia and loss of pericytes. Subsequently, paracellular but also transcellular transport across the retinal vascular wall increases via opening of endothelial intercellular junctions and qualitative and quantitative changes in endothelial caveolar transcellular transport, respectively. Functional changes in pericytes and astrocytes, as well as structural changes in the composition of the endothelial glycocalyx and the basal lamina around BRB endothelium further facilitate BRB leakage. As Starling's rules apply, active transcellular transport of plasma proteins by the BRB endothelial cells causing increased interstitial osmotic pressure is probably the main factor in the formation of macular edema. The understanding of the complex cellular and molecular processes involved in BRB leakage has grown rapidly in recent years. Although appropriate animal models for human conditions like diabetic macular edema are lacking, these insights have provided tools for rational design of drugs aimed at restoring the BRB as well as for design of effective transport of drugs across the BRB, to treat the chronic retinal diseases such as diabetic macular edema that affect the quality-of-life of millions of patients. 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Arch Med Sci
                Arch Med Sci
                AMS
                Archives of Medical Science : AMS
                Termedia Publishing House
                1734-1922
                1896-9151
                25 August 2016
                01 October 2016
                : 12
                : 5
                : 1142-1157
                Affiliations
                UND Life Sciences, USA
                Author notes
                Corresponding author: Undurti N. Das, UND Life Sciences, 2020 S 360 th St, # K-202, Federal Way, WA 98003, USA. E-mail: Undurti@ 123456hotmail.com
                Article
                28228
                10.5114/aoms.2016.61918
                5016593
                27695506
                1c8aeddb-d1d9-4b93-859b-f644628b256b
                Copyright: © 2016 Termedia & Banach

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.

                History
                : 07 April 2015
                : 20 April 2015
                Categories
                State of the Art Paper

                Medicine
                vascular endothelial growth factor,inflammation,diabetic retinopathy,polyunsaturated fatty acids,lipoxins

                Comments

                Comment on this article