25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid Methods for Antimicrobial Resistance Diagnostics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance (AMR) is one of the most challenging threats in public health; thus, there is a growing demand for methods and technologies that enable rapid antimicrobial susceptibility testing (AST). The conventional methods and technologies addressing AMR diagnostics and AST employed in clinical microbiology are tedious, with high turnaround times (TAT), and are usually expensive. As a result, empirical antimicrobial therapies are prescribed leading to AMR spread, which in turn causes higher mortality rates and increased healthcare costs. This review describes the developments in current cutting-edge methods and technologies, organized by key enabling research domains, towards fighting the looming AMR menace by employing recent advances in AMR diagnostic tools. First, we summarize the conventional methods addressing AMR detection, surveillance, and AST. Thereafter, we examine more recent non-conventional methods and the advancements in each field, including whole genome sequencing (WGS), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectrometry, Fourier transform infrared (FTIR) spectroscopy, and microfluidics technology. Following, we provide examples of commercially available diagnostic platforms for AST. Finally, perspectives on the implementation of emerging concepts towards developing paradigm-changing technologies and methodologies for AMR diagnostics are discussed.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: not found
          • Article: not found

          DNA sequencing with chain-terminating inhibitors

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Continuous base identification for single-molecule nanopore DNA sequencing.

            A single-molecule method for sequencing DNA that does not require fluorescent labelling could reduce costs and increase sequencing speeds. An exonuclease enzyme might be used to cleave individual nucleotide molecules from the DNA, and when coupled to an appropriate detection system, these nucleotides could be identified in the correct order. Here, we show that a protein nanopore with a covalently attached adapter molecule can continuously identify unlabelled nucleoside 5'-monophosphate molecules with accuracies averaging 99.8%. Methylated cytosine can also be distinguished from the four standard DNA bases: guanine, adenine, thymine and cytosine. The operating conditions are compatible with the exonuclease, and the kinetic data show that the nucleotides have a high probability of translocation through the nanopore and, therefore, of not being registered twice. This highly accurate tool is suitable for integration into a system for sequencing nucleic acids and for analysing epigenetic modifications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Determination of minimum inhibitory concentrations.

              Minimum inhibitory concentrations (MICs) are defined as the lowest concentration of an antimicrobial that will inhibit the visible growth of a microorganism after overnight incubation, and minimum bactericidal concentrations (MBCs) as the lowest concentration of antimicrobial that will prevent the growth of an organism after subculture on to antibiotic-free media. MICs are used by diagnostic laboratories mainly to confirm resistance, but most often as a research tool to determine the in vitro activity of new antimicrobials, and data from such studies have been used to determine MIC breakpoints. MBC determinations are undertaken less frequently and their major use has been reserved for isolates from the blood of patients with endocarditis. Standardized methods for determining MICs and MBCs are described in this paper. Like all standardized procedures, the method must be adhered to and may not be adapted by the user. The method gives information on the storage of standard antibiotic powder, preparation of stock antibiotic solutions, media, preparation of inocula, incubation conditions, and reading and interpretation of results. Tables giving expected MIC ranges for control NCTC and ATCC strains are also supplied.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                20 February 2021
                February 2021
                : 10
                : 2
                : 209
                Affiliations
                [1 ]Department of Food Hygiene and Technology, University of León, 24071 León, Spain; ieva.bergspica@ 123456bior.lv (I.B.); ealexandra.alexa@ 123456gmail.com (E.A.A.); aalvo@ 123456unileon.es (A.A.-O.); miguel.prieto@ 123456unileon.es (M.P.)
                [2 ]Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
                [3 ]Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia
                [4 ]Institute of Food Science and Technology, University of León, 24071 León, Spain
                Author notes
                [* ]Correspondence: georgia.kaprou@ 123456uni.lu
                Author information
                https://orcid.org/0000-0003-2833-2552
                https://orcid.org/0000-0001-9202-3856
                Article
                antibiotics-10-00209
                10.3390/antibiotics10020209
                7924329
                33672677
                1c8c7975-aeaa-4199-871d-a5c75275bb98
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 January 2021
                : 13 February 2021
                Categories
                Review

                molecular diagnostics,antimicrobial resistance,antibiotic susceptibility testing,microfluidics,point-of-care,lab-on-a-chip,maldi-tof,ftir,sequencing

                Comments

                Comment on this article