6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MultiFRAGing: Rapid and Simultaneous Genotyping of Multiple Alleles in a Single Reaction

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK
      Mutagenesis, DNA sequencing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Powerful and simple, RNA-guided CRISPR/Cas9 technology is a versatile genome editing tool that has revolutionized targeted mutagenesis. CRISPR-based genome editing has enabled large-scale functional genetic studies through the generation of gene knockouts in a variety of model organisms including zebrafish, and can be used to target multiple genes simultaneously. One of the challenges associated with the large scale application of this technique to zebrafish is the lack of a cost-effective method by which to identify mutants. To address this, we optimized the high-throughput, high-resolution fluorescent PCR-based fragment analysis method to develop MultiFRAGing - a robust and cost-effective method to genotype multiple targets in a single reaction. Our approach can identify indels in up to four targets from a single reaction, which represents a four-fold increase in genotyping throughput. This method can be used by any laboratory with access to capillary electrophoresis-based sequencing equipment.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.

            A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr, golden, mitfa, and ddx19). Mutagenesis rates reached 75-99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping.

              Taq DNA polymerase can catalyze non-templated addition of a nucleotide (principally adenosine) to the 3' end of PCR-amplified products. Recently, we showed that this activity, which is primer-specific, presents a potential source of error in genotyping studies based on the use of short tandem repeat (STR) markers. Furthermore, in reviewing our data, we found that non-templated nucleotide addition adjacent to a 3' terminal C is favored and that addition adjacent to a 3' terminal A is not. It was clear, however, that features of the template in addition to the 3' terminal base also affect the fraction of product adenylated. To define consensus sequences that promote or inhibit product adenylation, we transplanted sequences between the 5' ends of the reverse primers of markers that are adenylated and those of markers that are not adenylated. It proved difficult to identify a single sequence capable of protecting the products of all markers from non-templated addition of nucleotide. On the other hand, placing the sequence GTTTCTT on the 5' end of reverse primers resulted in nearly 100% adenylation of the 3' end of the forward strand. This modification or related ones (called "PIG-tailing") should facilitate accurate genotyping and efficient T/A cloning.
                Bookmark

                Author and article information

                Contributors
                Gaurav-varshney@omrf.org
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 February 2020
                21 February 2020
                2020
                : 10
                : 3172
                Affiliations
                ISNI 0000 0000 8527 6890, GRID grid.274264.1, Genes & Human Disease Research Program, , Oklahoma Medical Research Foundation, ; Oklahoma City, OK 73104 USA
                Author information
                http://orcid.org/0000-0002-0429-1904
                Article
                59986
                10.1038/s41598-020-59986-1
                7035419
                32081936
                1c8d0ae7-083e-45f1-ae8e-3ac2ea26b239
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 October 2019
                : 4 February 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                mutagenesis,dna sequencing
                Uncategorized
                mutagenesis, dna sequencing

                Comments

                Comment on this article