7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibitory Effects of Betulinic Acid on LPS-Induced Neuroinflammation Involve M2 Microglial Polarization via CaMKKβ-Dependent AMPK Activation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In response to the microenvironment, microglia may polarize into either an M1 pro-inflammatory phenotype, exacerbating neurotoxicity, or an M2 anti-inflammatory phenotype, conferring neuroprotection. Betulinic acid (BA) is a naturally pentacyclic triterpenoid with considerable anti-inflammatory properties. Here, we aim to investigate the potential effects of BA on microglial phenotype polarization and to reveal the underlying mechanisms of action. First, we confirmed that BA promoted M2 polarization and inhibited M1 polarization in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Then, we demonstrated that the effect of BA on microglial polarization was dependent on AMP-activated protein kinase (AMPK) activation, as evidenced by the fact that both AMPK inhibitor compound C and AMPK siRNA abolished the M2 polarization promoted by BA. Moreover, we found that calmodulin-dependent protein kinase kinase β (CaMKKβ), but not liver kinase B1, was the upstream kinase required for BA-mediated AMPK activation and microglial M2 polarization, via the use of both the CaMKKβ inhibitor STO-609 and CaMKKβ siRNA. Finally, BA enhanced AMPK phosphorylation and promoted M2 microglial polarization in the cerebral cortex of LPS-injected mice brains, which was attenuated by pre-administration of the AMPK inhibitor. This study demonstrated that BA promoted M2 polarization of microglia, thus conferring anti-neuroinflammatory effects via CaMKKβ-dependent AMPK activation.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          Microglial and macrophage polarization—new prospects for brain repair.

          The traditional view of the adult brain as a static organ has changed in the past three decades, with the emergence of evidence that it remains plastic and has some regenerative capacity after injury. In the injured brain, microglia and macrophages clear cellular debris and orchestrate neuronal restorative processes. However, activation of these cells can also hinder CNS repair and expand tissue damage. Polarization of macrophage populations toward different phenotypes at different stages of injury might account for this dual role. This Perspectives article highlights the specific roles of polarized microglial and macrophage populations in CNS repair after acute injury, and argues that therapeutic approaches targeting cerebral inflammation should shift from broad suppression of microglia and macrophages towards subtle adjustment of the balance between their phenotypes. Breakthroughs in the identification of regulatory molecules that control these phenotypic shifts could ultimately accelerate research towards curing brain disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype.

            Herein, we demonstrate a role of AMP-activated protein kinase (AMPK) as a potent counterregulator of inflammatory signaling pathways in macrophages. Stimulation of macrophages with anti-inflammatory cytokines (i.e., IL-10 and TGFbeta) resulted in the rapid phosphorylation/activation of AMPK, whereas stimulation of macrophages with a proinflammatory stimulus (LPS) resulted in AMPK dephosphorylation/inactivation. Inhibition of AMPKalpha expression by RNA interference dramatically increased the mRNA levels of LPS-induced TNF-alpha, IL-6, and cyclooxygenase-2. Likewise, expression of a dominant negative AMPKalpha1 in macrophages enhanced TNF-alpha and IL-6 protein synthesis in response to LPS stimulation, while diminishing the production of IL-10. In contrast, transfection of macrophages with a constitutively active form of AMPKalpha1 resulted in decreased LPS-induced TNF-alpha and IL-6 production, and heightened production of IL-10. In addition, we found that AMPK negatively regulated LPS-induced IkappaB-alpha degradation and positively regulated Akt activation, accompanied by inhibition of glycogen synthase kinase beta and activation of CREB. Thus, AMPK directs signaling pathways in macrophages in a manner that suppresses proinflammatory responses and promotes macrophage polarization to an anti-inflammatory functional phenotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia

              Background Activation of the peripheral innate immune system stimulates the secretion of CNS cytokines that modulate the behavioral symptoms of sickness. Excessive production of cytokines by microglia, however, may cause long-lasting behavioral and cognitive complications. The purpose of this study was to determine if minocycline, an anti-inflammatory agent and purported microglial inhibitor, attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. Methods In the first set of experiments the effect of minocycline pretreatment on LPS-induced microglia activation was assessed in BV-2 microglia cell cultures. In the second study, adult (3–6 m) BALB/c mice received an intraperitoneal (i.p.) injection of vehicle or minocycline (50 mg/kg) for three consecutive days. On the third day, mice were also injected (i.p.) with saline or Escherichia coli LPS (0.33 mg/kg) and behavior (i.e., sickness and anhedonia) and markers of neuroinflammation (i.e., microglia activation and inflammatory cytokines) were determined. In the final study, adult and aged BALB/c mice were treated with the same minocycline and LPS injection regimen and markers of neuroinflammation were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results Minocycline blocked LPS-stimulated inflammatory cytokine secretion in the BV-2 microglia-derived cell line and reduced LPS-induced Toll-like-receptor-2 (TLR2) surface expression on brain microglia. Moreover, minocycline facilitated the recovery from sickness behavior (i.e., anorexia, weight loss, and social withdrawal) and prevented anhedonia in adult mice challenged with LPS. Furthermore, the minocycline associated recovery from LPS-induced sickness behavior was paralleled by reduced mRNA levels of Interleukin (IL)-1β, IL-6, and indoleamine 2, 3 dioxygenase (IDO) in the cortex and hippocampus. Finally, in aged mice, where exaggerated neuroinflammation was elicited by LPS, minocycline pretreatment was still effective in markedly reducing mRNA levels of IL-1β, TLR2 and IDO in the hippocampus. Conclusion These data indicate that minocycline mitigates neuroinflammation in the adult and aged brain and modulates the cytokine-associated changes in motivation and behavior.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                03 April 2018
                2018
                : 11
                Affiliations
                1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
                2School of Life Sciences, Beijing University of Chinese Medicine , Beijing, China
                3Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge , Cambridge, United Kingdom
                Author notes

                Edited by: Andrei Surguchov, University of Kansas Medical Center, United States

                Reviewed by: Dora Brites, Universidade de Lisboa, Portugal; De-Pei Li, University of Texas MD Anderson Cancer Center, United States

                *Correspondence: Simon M. Y. Lee, simonlee@ 123456umac.mo

                These authors have contributed equally to this work.

                Article
                10.3389/fnmol.2018.00098
                5891622
                Copyright © 2018 Li, Zhang, Zhou, Feng, Tang, Hoi, He, Ma, Zhao and Lee.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 50, Pages: 16, Words: 0
                Categories
                Neuroscience
                Original Research

                Comments

                Comment on this article