43
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Weather and Climate Change on Dengue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          There is much uncertainty about the future impact of climate change on vector-borne diseases. Such uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors.

          Methods and Findings

          Using a Generalized Additive Model, we estimated statistically significant effects of weather and access to piped water on dengue. The effects of weather were highly nonlinear. Minimum temperature (Tmin) had almost no effect on dengue incidence below 5°C, but Tmin values above 18°C showed a rapidly increasing effect. Maximum temperature above 20°C also showed an increasing effect on dengue incidence with a peak around 32°C, after which the effect declined. There is also an increasing effect of precipitation as it rose to about 550 mm, beyond which such effect declines. Rising access to piped water was related to increasing dengue incidence. We used our model estimations to project the potential impact of climate change on dengue incidence under three emission scenarios by 2030, 2050, and 2080. An increase of up to 40% in dengue incidence by 2080 was estimated under climate change while holding the other driving factors constant.

          Conclusions

          Our results indicate that weather significantly influences dengue incidence in Mexico and that such relationships are highly nonlinear. These findings highlight the importance of using flexible model specifications when analysing weather–health interactions. Climate change may contribute to an increase in dengue incidence. Rising access to piped water may aggravate dengue incidence if it leads to increased domestic water storage. Climate change may therefore influence the success or failure of future efforts against dengue.

          Author Summary

          Relationships between weather and mosquito-borne diseases are nonlinear in nature. This means that the number of disease cases does not vary equally with changes in the climate system. Identifying adequately the form of the relationship between disease outcomes and their drivers in an empirical fashion can be tedious and imprecise. Here, we use a statistical modelling approach that estimates the form of the relationships between dengue and weather in an automated way. We use this approach to analyse a comprehensive dataset covering 23 years of dengue reports from Mexico. Our model incorporates the effects of some non-climatic factors that are key for disease occurrence. We then use our estimations to project the potential impact of climate change on dengue incidence under three different scenarios for three different time periods. The estimated effects of weather on dengue were highly nonlinear. These results highlight the importance of using flexible modelling approaches for the analysis of disease-weather relationships with a nonlinear behaviour. Rising access to water supply was related to increases in dengue incidence. This situation may be related to increased water storage induced by unreliable water supply. Dengue incidence may increase to about 40% by 2080 due to climate change. This increase in dengue incidence may be aggravated by a rising access to piped water if it leads to domestic water storage, although any adaptation measures to rising dengue may also affect the risk. Our results contribute to a better overall understanding of the epidemiology of dengue.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti.

          Most studies on the ability of insect populations to transmit pathogens consider only constant temperatures and do not account for realistic daily temperature fluctuations that can impact vector-pathogen interactions. Here, we show that diurnal temperature range (DTR) affects two important parameters underlying dengue virus (DENV) transmission by Aedes aegypti. In two independent experiments using different DENV serotypes, mosquitoes were less susceptible to virus infection and died faster under larger DTR around the same mean temperature. Large DTR (20 °C) decreased the probability of midgut infection, but not duration of the virus extrinsic incubation period (EIP), compared with moderate DTR (10 °C) or constant temperature. A thermodynamic model predicted that at mean temperatures 18 °C, larger DTR reduces DENV transmission. The negative impact of DTR on Ae. aegypti survival indicates that large temperature fluctuations will reduce the probability of vector survival through EIP and expectation of infectious life. Seasonal variation in the amplitude of daily temperature fluctuations helps to explain seasonal forcing of DENV transmission at locations where average temperature does not vary seasonally and mosquito abundance is not associated with dengue incidence. Mosquitoes lived longer and were more likely to become infected under moderate temperature fluctuations, which is typical of the high DENV transmission season than under large temperature fluctuations, which is typical of the low DENV transmission season. Our findings reveal the importance of considering short-term temperature variations when studying DENV transmission dynamics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Economic Impact of Dengue Illness in the Americas

            The growing burden of dengue in endemic countries and outbreaks in previously unaffected countries stress the need to assess the economic impact of this disease. This paper synthesizes existing studies to calculate the economic burden of dengue illness in the Americas from a societal perspective. Major data sources include national case reporting data from 2000 to 2007, prospective cost of illness studies, and analyses quantifying underreporting in national routine surveillance systems. Dengue illness in the Americas was estimated to cost $2.1 billion per year on average (in 2010 US dollars), with a range of $1–4 billion in sensitivity analyses and substantial year to year variation. The results highlight the substantial economic burden from dengue in the Americas. The burden for dengue exceeds that from other viral illnesses, such as human papillomavirus (HPV) or rotavirus. Because this study does not include some components (e.g., vector control), it may still underestimate total economic consequences of dengue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial Epidemiology: Current Approaches and Future Challenges

              Spatial epidemiology is the description and analysis of geographic variations in disease with respect to demographic, environmental, behavioral, socioeconomic, genetic, and infectious risk factors. We focus on small-area analyses, encompassing disease mapping, geographic correlation studies, disease clusters, and clustering. Advances in geographic information systems, statistical methodology, and availability of high-resolution, geographically referenced health and environmental quality data have created unprecedented new opportunities to investigate environmental and other factors in explaining local geographic variations in disease. They also present new challenges. Problems include the large random component that may predominate disease rates across small areas. Though this can be dealt with appropriately using Bayesian statistics to provide smooth estimates of disease risks, sensitivity to detect areas at high risk is limited when expected numbers of cases are small. Potential biases and confounding, particularly due to socioeconomic factors, and a detailed understanding of data quality are important. Data errors can result in large apparent disease excess in a locality. Disease cluster reports often arise nonsystematically because of media, physician, or public concern. One ready means of investigating such concerns is the replication of analyses in different areas based on routine data, as is done in the United Kingdom through the Small Area Health Statistics Unit (and increasingly in other European countries, e.g., through the European Health and Environment Information System collaboration). In the future, developments in exposure modeling and mapping, enhanced study designs, and new methods of surveillance of large health databases promise to improve our ability to understand the complex relationships of environment to health.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                November 2013
                14 November 2013
                : 7
                : 11
                : e2503
                Affiliations
                [1 ]The Abdus Salam International Centre for Theoretical Physics, Earth System Physics Section, Trieste, Italy
                [2 ]Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
                [3 ]School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
                [4 ]Department of Economics, University of California, San Diego, La Jolla, California, United States of America
                [5 ]Norwich Medical School, University of East Anglia, Norwich, United Kingdom
                U.S. Naval Medical Research Unit No. 2, Indonesia
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FJCG CF. Analyzed the data: FJCG CF. Contributed reagents/materials/analysis tools: FJCG CF IRL PRH. Wrote the paper: FJCG. Gathered the data: FJCG. Supervised the project: IRL PRH. Discussed the results and implications: FJCG CF IRL PRH. Commented on the manuscript at all stages: FJCG CF IRL PRH.

                Article
                PNTD-D-13-00607
                10.1371/journal.pntd.0002503
                3828158
                24244765
                1ca9121a-535f-420d-bd64-7c46c5cbf94c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 May 2013
                : 13 September 2013
                Page count
                Pages: 9
                Funding
                FJCG received a scholarship from the Mexican National Council of Science and Technology (No. 207506) www.conacyt.mx. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article