2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electronic Cigarette Exposure Enhances Lung Inflammatory and Fibrotic Responses in COPD Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although a few studies show that the use of electronic nicotine delivery systems (ENDS) may ameliorate objective and subjective outcomes in COPD smokers who switched to electronic cigarettes, it is unclear whether e-cigarette exposure alters lung pathological features and inflammatory response in COPD. Here, we employed βENaC-overexpressing mice bearing COPD-like pulmonary abnormality, and exposed them to ENDS. We found that ENDS exposure aggravated airspace enlargement and mucus production in βENaC-overexpressing mice, which was associated with increased MMP12 and Muc5ac, respectively. ENDS exposure to mice significantly increased the numbers of macrophages, particularly in M2 macrophages in bronchoalveolar lavage (BAL) fluid, despite ENDS did not induce M2 macrophage polarization in a cultured murine macrophage cell line (RAW264.7). There were no changes in neutrophils in BAL fluid by ENDS exposure. Multiple cytokine productions were increased including M-CSF, IL-1r α , IL-10, and TGF-β1, in BAL fluid from mice when exposed to ENDS. The Sirius Red staining and hydroxyproline assay showed ENDS-exposed mice displayed enhanced fibrotic phenotypes compared to control mice. In conclusion, ENDS exposure enhances airspace enlargement, mucus secretion, and fibrogenesis in COPD mice. This is associated with increased MMP12, inflammatory responses, and M2 macrophage phenotype. This study provides pre-clinical data implicating that electronic cigarette exposure is not safe in COPD patients who want to replace traditional cigarettes with ENDS.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage plasticity, polarization, and function in health and disease.

          Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exploring the full spectrum of macrophage activation.

            Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The M1 and M2 paradigm of macrophage activation: time for reassessment

              Macrophages are endowed with a variety of receptors for lineage-determining growth factors, T helper (Th) cell cytokines, and B cell, host, and microbial products. In tissues, macrophages mature and are activated in a dynamic response to combinations of these stimuli to acquire specialized functional phenotypes. As for the lymphocyte system, a dichotomy has been proposed for macrophage activation: classic vs. alternative, also M1 and M2, respectively. In view of recent research about macrophage functions and the increasing number of immune-relevant ligands, a revision of the model is needed. Here, we assess how cytokines and pathogen signals influence their functional phenotypes and the evidence for M1 and M2 functions and revisit a paradigm initially based on the role of a restricted set of selected ligands in the immune response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                28 July 2021
                2021
                : 12
                : 726586
                Affiliations
                [ 1 ]Department of Biology, Georgia State University, Atlanta, GA, United States
                [ 2 ]Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
                [ 3 ]Department of Nutrition, Georgia State University, Atlanta, GA, United States
                [ 4 ]Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
                [ 5 ]Department of Chemistry, Georgia State University, Atlanta, GA, United States
                [ 6 ]Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
                Author notes

                Edited by: Jian Gao, Second Affiliated Hospital of Dalian Medical University, China

                Reviewed by: Hongguang Nie, China Medical University, China

                Qixin Wang, University of Rochester, United States

                *Correspondence: Xiangming Ji, xji4@ 123456gsu.edu

                This article was submitted to Respiratory Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                726586
                10.3389/fphar.2021.726586
                8355703
                34393802
                1cc069e0-5666-4390-a8f0-4c88f0957e81
                Copyright © 2021 Han, Peng, Meister, Yao, Yang, Zou, Liu and Ji.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 June 2021
                : 14 July 2021
                Funding
                Funded by: Flight Attendant Medical Research Institute 10.13039/100005640
                Funded by: National Institutes of Health 10.13039/100000002
                Funded by: NHLBI Division of Intramural Research 10.13039/1,00017540
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                ends,copd,m2 macrophage,lung fibrosis,inflammation
                Pharmacology & Pharmaceutical medicine
                ends, copd, m2 macrophage, lung fibrosis, inflammation

                Comments

                Comment on this article