91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Female mosquitoes of some species are generalists and will blood-feed on a variety of vertebrate hosts, whereas others display marked host preference. Anopheles gambiae and Aedes aegypti have evolved a strong preference for humans, making them dangerously efficient vectors of malaria and Dengue haemorrhagic fever 1 . Specific host odours likely drive this strong preference since other attractive cues, including body heat and exhaled carbon dioxide (CO 2) are common to all warm-blooded hosts 2, 3 . Insects sense odours via several chemosensory receptor families, including the odorant receptors (ORs). ORs are membrane proteins that form heteromeric odour-gated ion channels 4, 5 comprised of a variable ligand-selective subunit and an obligate co-receptor called Orco 6 . Here we use zinc-finger nucleases to generate targeted mutations in the Ae. aegypti orco gene to examine the contribution of Orco and the OR pathway to mosquito host selection and sensitivity to the insect repellent DEET. orco mutant olfactory sensory neurons have greatly reduced spontaneous activity and lack odour-evoked responses. Behaviourally, orco mutant mosquitoes have severely reduced attraction to honey, an odour cue related to floral nectar, and do not respond to human scent in the absence of CO 2. However, in the presence of CO 2, female orco mutant mosquitoes retain strong attraction to both human and animal hosts, but no longer strongly prefer humans. orco mutant females are attracted to human hosts even in the presence of DEET, but are repelled upon contact, indicating that olfactory- and contact-mediated effects of DEET are mechanistically distinct. We conclude that the OR pathway is crucial for an anthropophilic vector mosquito to discriminate human from non-human hosts and to be effectively repelled by volatile DEET.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Insect olfactory receptors are heteromeric ligand-gated ion channels.

          In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly. Here we provide evidence that heteromeric insect ORs comprise a new class of ligand-activated non-selective cation channels. Heterologous cells expressing silkmoth, fruitfly or mosquito heteromeric OR complexes showed extracellular Ca2+ influx and cation-non-selective ion conductance on stimulation with odorant. Odour-evoked OR currents are independent of known G-protein-coupled second messenger pathways. The fast response kinetics and OR-subunit-dependent K+ ion selectivity of the insect OR complex support the hypothesis that the complex between OR and Or83b itself confers channel activity. Direct evidence for odorant-gated channels was obtained by outside-out patch-clamp recording of Xenopus oocyte and HEK293T cell membranes expressing insect OR complexes. The ligand-gated ion channel formed by an insect OR complex seems to be the basis for a unique strategy that insects have acquired to respond to the olfactory environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels.

            From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Knockout rats via embryo microinjection of zinc-finger nucleases.

              The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                8 May 2013
                29 May 2013
                27 June 2013
                29 November 2013
                : 498
                : 7455
                : 487-491
                Affiliations
                [1 ]Laboratory of Neurogenetics and Behaviour, The Rockefeller University, New York, NY 10065 USA
                [2 ]Howard Hughes Medical Institute
                [3 ]Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
                [4 ]Department of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
                Author notes
                Correspondence and requests for materials should be addressed to: L.B.V. ( Leslie.Vosshall@ 123456rockefeller.edu )
                [†]

                Current address: Biological Science Laboratories, KAO Corporation, Tochigi 321-3497, Japan.

                Article
                NIHMS470698
                10.1038/nature12206
                3696029
                23719379
                1cc27ace-0cf8-46da-82db-e5bb11997206

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 AI029746 || AI
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article