13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The parasitic flowering plants of the genera Orobanche and Phelipanche (broomrape species) are obligatory chlorophyll-lacking root-parasitic weeds that infect dicotyledonous plants and cause heavy economic losses in a wide variety of plant species in warm-temperate and subtropical regions. One of the most effective strategies for broomrape control is crop breeding for broomrape resistance. Previous efforts to find natural broomrape-resistant tomato (Solanum lycopersicon) genotypes were unsuccessful, and no broomrape resistance was found in any wild tomato species. Recently, however, the fast-neutron-mutagenized tomato mutant SL-ORT1 was found to be highly resistant to various Phelipanche and Orobanche spp. Nevertheless, SL-ORT1 plants were parasitized by Phelipanche aegyptiaca if grown in pots together with the susceptible tomato cv. M-82. In the present study, no toxic activity or inhibition of Phelipanche seed germination could be detected in the SL-ORT1 root extracts. SL-ORT1 roots did not induce Phelipanche seed germination in pots but they were parasitized, at the same level as M-82, after application of the synthetic germination stimulant GR24 to the rhizosphere. Whereas liquid chromatography coupled to tandem mass spectrometry analysis of root exudates of M-82 revealed the presence of the strigolactones orobanchol, solanacol, and didehydro-orobanchol isomer, these compounds were not found in the exudates of SL-ORT1. It can be concluded that SL-ORT1 resistance results from its inability to produce and secrete natural germination stimulants to the rhizosphere.

          Related collections

          Author and article information

          Journal
          Phytopathology
          Phytopathology
          Scientific Societies
          0031-949X
          0031-949X
          Feb 2011
          : 101
          : 2
          Affiliations
          [1 ] Institute of Plant Protection, Newe Ya'ar Research Center, Ramat Yishay, Israel. evgeniad@vocani.agri.gov.il
          Article
          10.1094/PHYTO-07-10-0184
          20942651
          1cec3e98-3884-4c67-b3f0-6aa4cfa1ed55
          History

          Comments

          Comment on this article