3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Applications of the radiotracers in the industry: A review

      Applied Radiation and Isotopes
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Influence of tribology on global energy consumption, costs and emissions

          Calculations of the impact of friction and wear on energy consumption, economic expenditure, and CO 2 emissions are presented on a global scale. This impact study covers the four main energy consuming sectors: transportation, manufacturing, power generation, and residential. Previously published four case studies on passenger cars, trucks and buses, paper machines and the mining industry were included in our detailed calculations as reference data in our current analyses. The following can be concluded: – In total, ~23% (119 EJ) of the world’s total energy consumption originates from tribological contacts. Of that 20% (103 EJ) is used to overcome friction and 3% (16 EJ) is used to remanufacture worn parts and spare equipment due to wear and wear-related failures. – By taking advantage of the new surface, materials, and lubrication technologies for friction reduction and wear protection in vehicles, machinery and other equipment worldwide, energy losses due to friction and wear could potentially be reduced by 40% in the long term (15 years)and by 18% in the short term (8 years). On global scale, these savings would amount to 1.4% of the GDP annually and 8.7% of the total energy consumption in the long term. – The largest short term energy savings are envisioned in transportation (25%) and in the power generation (20%) while the potential savings in the manufacturing and residential sectors are estimated to be ~10%. In the longer terms, the savings would be 55%, 40%, 25%, and 20%, respectively. – Implementing advanced tribological technologies can also reduce the CO 2 emissions globally by as much as 1,460 MtCO 2 and result in 450,000 million Euros cost savings in the short term. In the longer term, the reduction can be 3,140 MtCO 2 and the cost savings 970,000 million Euros. Fifty years ago, wear and wear-related failures were a major concern for UK industry and their mitigation was considered to be the major contributor to potential economic savings by as much as 95% in ten years by the development and deployment of new tribological solutions. The corresponding estimated savings are today still of the same orders but the calculated contribution to cost reduction is about 74% by friction reduction and to 26% from better wear protection. Overall, wear appears to be more critical than friction as it may result in catastrophic failures and operational breakdowns that can adversely impact productivity and hence cost.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Continuous flow systems

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Enhanced Oil Recovery: An Update Review

                Bookmark

                Author and article information

                Journal
                Applied Radiation and Isotopes
                Applied Radiation and Isotopes
                Elsevier BV
                09698043
                April 2022
                April 2022
                : 182
                : 110076
                Article
                10.1016/j.apradiso.2021.110076
                1d01fa15-beb2-45cb-b0c4-a50c3db8468b
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article