17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A First Report of Aeromonas veronii Infection of the Sea Bass, Lateolabrax maculatus in China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sea bass, Lateolabrax maculatus is commercially farmed in Zhuhai, located in the Guangdong Province of China. L. maculatus in aquaculture have suffered acute death, characterized by ulcerations on the body surface, congestion, and hemorrhage in internal organs such as liver, kidney, and spleen. The dominant infecting strain of bacteria isolated from the kidneys of diseased fish was identified as Aeromonas veronii (strain 18BJ181). This identification was based on analysis of morphological, physiological, and biochemical features, as well as 16S rRNA and gyrB gene sequences. Drug sensitivity testing showed that the strain 18BJ181 isolate was resistant to four antibacterial drugs, including amoxicillin, madinomycin, penicillin and sulfamethoxazole, while moderately sensitive to erythromycin and rifampicin. The detection of growth characteristics showed that the strain 18BJ181 exhibited adaptability to the environment. In addition, some virulence genes, such as aer, act, gcaT, tapA and fla, were detected in the strain 18BJ181. The median lethal dosage of the strain 18BJ181 isolate in L. maculatus was 8.5 × 10 5 and 4.2 × 10 5 cfu/g under the conditions of intraperitoneal injection and intramuscular injection, respectively. The experimentally induced infection showed that the 18BJ181 isolate caused considerable histological lesions in L. maculatus, including tissue degeneration, necrosis, and different degrees of hemorrhage. These results provided evidence for a more comprehensive understanding of A. veronii strain 18BJ181 infection in L. maculatus.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates.

          Vibrio harveyi, which now includes Vibrio carchariae as a junior synonym, is a serious pathogen of marine fish and invertebrates, particularly penaeid shrimp. In fish, the diseases include vasculitis, gastro-enteritis and eye lesions. With shrimp, the pathogen is associated with luminous vibriosis and Bolitas negricans. Yet, the pathogenicity mechanisms are imprecisely understood, with likely mechanisms involving the ability to attach and form biofilms, quorum sensing, various extracellular products including proteases and haemolysins, lipopolysaccharide, and interaction with bacteriophage and bacteriocin-like substances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish.

            The presence of virulence genes and integrons was determined in 81 strains of Aeromonas veronii isolated from farm-raised catfish. Polymerase chain reaction (PCR) protocols were used to determine the presence of genes for cytotoxic enterotoxin (act), aerolysin (aerA), two cytotonic enterotoxins (ast, alt), lipase (lip), glycerophospholipid:cholesterol acyltransferase (gcaT), serine protease (ser), DNases (exu), elastase (ahyB) and the structural gene flagellin (fla) in the template DNA. Oligonucleotide primers amplified a 231-bp region of the act gene from the template DNA of 97.0% of the isolates. Primers specific for the amplification of the aerA gene amplified a 431-bp region of the aerA gene from the template DNA of 96.0% of the isolates. None of the isolates contained ast or alt genes. Oligonucleotide primers specific for the amplification of lip, gcaT, ser and fla genes, amplified their respective amplicons from 85.0, 78.0, 82.0 and 80.0% of the isolates. None of the isolates contained exu or the elastase genes. Several of the isolates (48.0%) contained class I integrons that confer resistance to multiple antibiotics; various sizes between 0.6 and 3.1 kb were found. None of the isolates contained Class II integrons. Our results indicate that farm-raised catfish may be a source of pathogenic A. veronii and that the potential health risks posed by virulent strains of A. veronii should not be underestimated. Published by Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems.

              An increasing incidence of multidrug resistance amongst Aeromonas spp. isolates, which are both fish pathogens and emerging opportunistic human pathogens, has been observed worldwide. This can be attributed to the horizontal transfer of mobile genetic elements, viz.: plasmids and class 1 integrons. The antimicrobial susceptibilities of 37 Aeromonas spp. isolates, from tilapia, trout and koi aquaculture systems, were determined by disc-diffusion testing. The plasmid content of each isolate was examined using the alkaline lysis protocol. Tet determinant type was determined by amplification using two degenerate primer sets and subsequent HaeIII restriction. The presence of integrons was determined by PCR amplification of three integrase genes, as well as gene cassettes, and the qacEDelta1-sulI region. Thirty-seven Aeromonas spp. isolates were differentiated into six species by aroA PCR-RFLP, i.e., A. veronii biovar sobria, A. hydrophila, A. encheleia, A. ichtiosoma, A. salmonicida, and A. media. High levels of resistance to tetracycline (78.3%), amoxicillin (89.2%), and augmentin (86.5%) were observed. Decreased susceptibility to erythromycin was observed for 67.6% of isolates. Although 45.9% of isolates displayed nalidixic acid resistance, majority of isolates were susceptible to the fluoroquinolones. The MAR index ranged from 0.12 to 0.59, with majority of isolates indicating high-risk contamination originating from humans or animals where antibiotics are often used. Plasmids were detected in 21 isolates, with 14 of the isolates displaying multiple plasmid profiles. Single and multiple class A family Tet determinants were observed in 27% and 48.7% of isolates, respectively, with Tet A being the most prevalent Tet determinant type. Class 1 integron and related structures were amplified and carried different combinations of the antibiotic resistance gene cassettes ant(3'')Ia, aac(6')Ia, dhfr1, oxa2a and/or pse1. Class 2 integrons were also amplified, but the associated resistance cassettes could not be identified. Integrons and Tet determinants were carried by 68.4% of isolates bearing plasmids, although it was not a strict association. These plasmids could potentially mobilize the integrons and Tet determinants, thus transferring antimicrobial resistance to other water-borne bacteria or possible human pathogens. The identification of a diversity of resistance genes in the absence of antibiotic selective pressure in Aeromonas spp. from aquaculture systems highlights the risk of these bacteria serving as a reservoir of resistance genes, which may be transferred to other bacteria in the aquaculture environment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                20 January 2021
                2020
                : 7
                : 600587
                Affiliations
                [1] 1Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering , Guangzhou, China
                [2] 2Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture and Rural Affairs , Guangzhou, China
                [3] 3National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University , Shanghai, China
                [4] 4Modern Agricultural Development Center of Zhuhai City , Zhuhai, China
                Author notes

                Edited by: Lixing Huang, Jimei University, China

                Reviewed by: Peng Luo, South China Sea Institute of Oceanology (CAS), China; Xueming Dan, South China Agricultural University, China

                *Correspondence: Youlu Su youlusu@ 123456zhku.edu.cn

                This article was submitted to Veterinary Infectious Diseases, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2020.600587
                7855973
                33553279
                1d02ffa2-861f-40a0-bc09-1361b3497c74
                Copyright © 2021 Wang, Mao, Feng, Li, Hu, Jiang, Gu and Su.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 August 2020
                : 21 December 2020
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 47, Pages: 12, Words: 6623
                Categories
                Veterinary Science
                Original Research

                aeromonas veronii,lateolabrax maculatus,physiological and biochemical characteristics,pathogenicity,pathology

                Comments

                Comment on this article