12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides.

      Nature genetics
      Benzyl Alcohols, pharmacology, Cell Membrane, drug effects, Chromosomes, Human, Pair 12, Chromosomes, Human, Pair 7, Cloning, Molecular, DNA, Complementary, metabolism, Dose-Response Relationship, Drug, Glucosides, Humans, Immunohistochemistry, In Situ Hybridization, Microscopy, Confocal, Models, Chemical, Molecular Sequence Data, Phylogeny, Receptors, Cell Surface, chemistry, physiology, Receptors, G-Protein-Coupled, Reverse Transcriptase Polymerase Chain Reaction, Spectrometry, Fluorescence, Taste, Time Factors, Tissue Distribution, Transfection

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bitter taste generally causes aversion, which protects humans from ingesting toxic substances. But bitter flavors also contribute to the palatability of food and beverages, thereby influencing nutritional habits in humans. Although many studies have examined bitter taste, the underlying receptor mechanisms remain poorly understood. Anatomical, functional and genetic data from rodents suggest the existence of a family of receptors that are responsive to bitter compounds. Here we report that a human member of this family, TAS2R16, is present in taste receptor cells on the tongue and is activated by bitter beta-glucopyranosides. Responses to these phytonutrients show a similar concentration dependence and desensitization in transfected cells and in experiments assessing taste perception in humans. Bitter compounds consisting of a hydrophobic residue attached to glucose by a beta-glycosidic bond activate TAS2R16. Thus, TAS2R16 links the recognition of a specific chemical structure to the perception of bitter taste. If the ability of TAS2R16 to detect substances with common molecular properties is typical of the bitter receptor family, it may explain how a few receptors permit the perception of numerous bitter substances.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A novel family of mammalian taste receptors.

          In mammals, taste perception is a major mode of sensory input. We have identified a novel family of 40-80 human and rodent G protein-coupled receptors expressed in subsets of taste receptor cells of the tongue and palate epithelia. These candidate taste receptors (T2Rs) are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. Notably, a single taste receptor cell expresses a large repertoire of T2Rs, suggesting that each cell may be capable of recognizing multiple tastants. T2Rs are exclusively expressed in taste receptor cells that contain the G protein alpha subunit gustducin, implying that they function as gustducin-linked receptors. In the accompanying paper, we demonstrate that T2Rs couple to gustducin in vitro, and respond to bitter tastants in a functional expression assay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular tinkering of G protein-coupled receptors: an evolutionary success.

            Among membrane-bound receptors, the G protein-coupled receptors (GPCRs) are certainly the most diverse. They have been very successful during evolution, being capable of transducing messages as different as photons, organic odorants, nucleotides, nucleosides, peptides, lipids and proteins. Indirect studies, as well as two-dimensional crystallization of rhodopsin, have led to a useful model of a common 'central core', composed of seven transmembrane helical domains, and its structural modifications during activation. There are at least six families of GPCRs showing no sequence similarity. They use an amazing number of different domains both to bind their ligands and to activate G proteins. The fine-tuning of their coupling to G proteins is regulated by splicing, RNA editing and phosphorylation. Some GPCRs have been found to form either homo- or heterodimers with a structurally different GPCR, but also with membrane-bound proteins having one transmembrane domain such as nina-A, odr-4 or RAMP, the latter being involved in their targeting, function and pharmacology. Finally, some GPCRs are unfaithful to G proteins and interact directly, via their C-terminal domain, with proteins containing PDZ and Enabled/VASP homology (EVH)-like domains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bitter taste, phytonutrients, and the consumer: a review.

              Dietary phytonutrients found in vegetables and fruit appear to lower the risk of cancer and cardiovascular disease. Studies on the mechanisms of chemoprotection have focused on the biological activity of plant-based phenols and polyphenols, flavonoids, isoflavones, terpenes, and glucosinolates. Enhancing the phytonutrient content of plant foods through selective breeding or genetic improvement is a potent dietary option for disease prevention. However, most, if not all, of these bioactive compounds are bitter, acrid, or astringent and therefore aversive to the consumer. Some have long been viewed as plant-based toxins. As a result, the food industry routinely removes these compounds from plant foods through selective breeding and a variety of debittering processes. This poses a dilemma for the designers of functional foods because increasing the content of bitter phytonutrients for health may be wholly incompatible with consumer acceptance. Studies on phytonutrients and health ought to take sensory factors and food preferences into account.
                Bookmark

                Author and article information

                Comments

                Comment on this article