16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Concentration and localization of zinc during seed development and germination in wheat

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Tansley Review No. 111

          Zinc deficiency is one of the most widespread micronutrient deficiencies in plants and causes severe reductions in crop production. There are a number of physiological impairments in Zn-deficient cells causing inhibition of the growth, differentiation and development of plants. Increasing evidence indicates that oxidative damage to critical cell compounds resulting from attack by reactive O2 species (ROS) is the basis of disturbances in plant growth caused by Zn deficiency. Zinc interferes with membrane-bound NADPH oxidase producing ROS. In Zn-deficient plants the iron concentration increases, which potentiates the production of free radicals. The Zn nutritional status of plants influences photooxidative damage to chloroplasts, catalysed by ROS. Zinc-deficient leaves are highly light-sensitive, rapidly becoming chlorotic and necrotic when exposed to high light intensity. Zinc plays critical roles in the defence system of cells against ROS, and thus represents an excellent protective agent against the oxidation of several vital cell components such as membrane lipids and proteins, chlorophyll, SH-containing enzymes and DNA. The cysteine, histidine and glutamate or aspartate residues represent the most critical Zn- binding sites in enzymes, DNA-binding proteins (Zn-finger proteins) and membrane proteins. In addition, animal studies have shown that Zn is involved in inhibition of apoptosis (programmed cell death) which is preceded by DNA and membrane damage through reactions with ROS. contents Summary 185 I. introduction 186 II. effect of zinc on production of reactive oxygen species 186 III. membrane damage by reactive oxygen species 193 III. membrane damage by reactive oxygen species 193 V. involvement of zinc in plant stress tolerance 199 VI. conclusions 199 Acknowledgements 200 References 200.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofortifying crops with essential mineral elements.

            Humans require more than 22 mineral elements, which can all be supplied by an appropriate diet. However, the diets of populations subsisting on cereals, or inhabiting regions where soil mineral imbalances occur, often lack Fe, Zn, Ca, Mg, Cu, I or Se. Traditional strategies to deliver these minerals to susceptible populations have relied on supplementation or food fortification programs. Unfortunately, these interventions have not always been successful. An alternative solution is to increase mineral concentrations in edible crops. This is termed 'biofortification'. It can be achieved by mineral fertilization or plant breeding. There is considerable genetic variation in crop species that can be harnessed for sustainable biofortification strategies. Varieties with increased mineral concentrations in their edible portions are already available, and new genotypes with higher mineral densities are being developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of nutrient modulation of the immune response.

              Lack of adequate macronutrients or selected micronutrients, especially zinc, selenium, iron, and the antioxidant vitamins, can lead to clinically significant immune deficiency and infections in children. Undernutrition in critical periods of gestation and neonatal maturation and during weaning impairs the development and differentiation of a normal immune system. Infections are both more frequent and more often become chronic in the malnourished child. Recent identification of genetic mechanisms is revealing critical pathways in the gastrointestinal immune response. New studies show that the development of tolerance, control of inflammation, and response to normal mucosal flora are interrelated and linked to specific immune mechanisms. Nutrients act as antioxidants and as cofactors at the level of cytokine regulation. Protein calorie malnutrition and zinc deficiency activate the hypothalamic-pituitary-adrenal axis. Increased circulating levels of glucocorticoids cause thymic atrophy and affect hematopoiesis. Chronic undernutrition and micronutrient deficiency compromise cytokine response and affect immune cell trafficking. The combination of chronic undernutrition and infection further weakens the immune response, leading to altered immune cell populations and a generalized increase in inflammatory mediators. Obesity caused by excess nutrition or excess storage of fats relative to energy expenditure is a form of malnutrition that is increasingly seen in children. Leptin is emerging as a cytokine-like immune regulator that has complex effects in both overnutrition and in the inflammatory response in malnutrition. Because the immune system is immature at birth, malnutrition in childhood might have long-term effects on health.
                Bookmark

                Author and article information

                Journal
                Physiologia Plantarum
                Physiol Plant
                Wiley-Blackwell
                0031-9317
                1399-3054
                September 2006
                September 2006
                : 128
                : 1
                : 144-152
                Article
                10.1111/j.1399-3054.2006.00737.x
                1d198b07-e655-4e03-a546-94f43866bdda
                © 2006

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article