8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular Vesicles Derived From Olfactory Ensheathing Cells Promote Peripheral Nerve Regeneration in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidence showed that extracellular vesicles (EVs) and their cargoes are important information mediators in the nervous system and have been proposed to play an important role in regulating regeneration. Moreover, many studies reported that olfactory ensheathing cells (OECs) conditioned medium is capable of promoting nerve regeneration and functional recovery. However, the role of EVs derived from OECs in axonal regeneration has not been clear. Thereby, the present study was designed to firstly isolate EVs from OECs culture supernatants, and then investigated their role in enhancing axonal regeneration after sciatic nerve injury. In vitro studies showed that OECs-EVs promoted axonal growth of dorsal root ganglion (DRG), which is dose-dependent and relies on their integrity. In vivo studies further demonstrated that nerve conduit containing OECs-EVs significantly enhanced axonal regeneration, myelination of regenerated axons and neurologically functional recovery in rats with sciatic nerve injury. In conclusion, our results, for the first time, demonstrated that OECs-EVs are capable of promoting nerve regeneration and functional recovery after peripheral nerve injuries in rats.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth.

          Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes. Copyright © 2012 AlphaMed Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway.

            Human umbilical cord mesenchymal stem cells (hucMSCs) and their exosomes have been considered as potential therapeutic tools for tissue regeneration; however, the underlying mechanisms are still not well understood. In this study, we isolated and characterized the exosomes from hucMSCs (hucMSC-Ex) and demonstrated that hucMSC-Ex promoted the proliferation, migration, and tube formation of endothelial cells in a dose-dependent manner. Furthermore, we demonstrated that hucMSC-Ex promoted wound healing and angiogenesis in vivo by using a rat skin burn model. We discovered that hucMSC-Ex promoted β-catenin nuclear translocation and induced the increased expression of proliferating cell nuclear antigen, cyclin D3, N-cadherin, and β-catenin and the decreased expression of E-cadherin. The activation of Wnt/β-catenin is critical in the induction of angiogenesis by hucMSC-Ex, which could be reversed by β-catenin inhibitor ICG-001. Wnt4 was delivered by hucMSC-Ex, and the knockdown of Wnt4 in hucMSC-Ex abrogated β-catenin nuclear translocation in endothelial cells. The in vivo proangiogenic effects were also inhibited by interference of Wnt4 expression in hucMSC-Ex. Taken together, these results suggest that hucMSC-Ex-mediated Wnt4 induces β-catenin activation in endothelial cells and exerts proangiogenic effects, which could be an important mechanism for cutaneous wound healing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons?

              Oligodendrocytes synthesize the CNS myelin sheath by enwrapping axonal segments with elongations of their plasma membrane. Spatial and temporal control of membrane traffic is a prerequisite for proper myelin formation. The major myelin proteolipid protein (PLP) accumulates in late endosomal storage compartments and multivesicular bodies (MVBs). Fusion of MVBs with the plasma membrane results in the release of the intralumenal vesicles, termed exosomes, into the extracellular space. Here, we show that cultured oligodendrocytes secrete exosomes carrying major amounts of PLP and 2'3'-cyclic-nucleotide-phosphodiesterase (CNP). These exosomes migrated at the characteristic density of 1.10-1.14 g/mL in sucrose density gradients. Treatment of primary oligodendrocytes with the calcium-ionophore ionomycin markedly increased the release of PLP-containing exosomes, indicating that oligodendroglial exosome secretion is regulated by cytosolic calcium levels. A proteomic analysis of the exosomal fraction isolated by sucrose density centrifugation revealed in addition to PLP and CNP, myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) as constituents of oligodendroglial exosomes, together with a striking group of proteins with proposed functions in the relief of cell stress. Oligodendroglial exosome secretion may contribute to balanced production of myelin proteins and lipids, but in addition exosomes may embody a signaling moiety involved in glia-mediated trophic support to axons. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                06 December 2019
                2019
                : 13
                : 548
                Affiliations
                [1] 1Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University , Xi’an, China
                [2] 2Department of Orthopaedics, The General Hospital of Central Theater Command of People’s Liberation Army , Wuhan, China
                Author notes

                Edited by: Arturo Ortega, Center for Research and Advanced Studies (CINVESTAV), Mexico

                Reviewed by: Daniel Ortuño-Sahagún, Universidad de Guadalajara, Mexico; Valerio Magnaghi, University of Milan, Italy

                *Correspondence: Jinghui Huang huangjh@ 123456fmmu.edu.cn Zhuojing Luo zhuojingl@ 123456163.com

                These authors have contributed equally to this work

                Article
                10.3389/fncel.2019.00548
                6908849
                31866834
                1d1e0581-ae15-4034-848d-7267b1c0c3a1
                Copyright © 2019 Xia, Gao, Li, Huang, Ma, Zhao, Yang, Huang and Luo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 September 2019
                : 26 November 2019
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 59, Pages: 14, Words: 9758
                Funding
                Funded by: Fourth Military Medical University 10.13039/501100007547
                Categories
                Cellular Neuroscience
                Original Research

                Neurosciences
                olfactory ensheathing cells,extracellular vesicles,peripheral nerve injury,nerve regeneration,functional recovery

                Comments

                Comment on this article