42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Expression of enzymatically inactive caspase-8, or deletion of caspase-8 from basal epidermal keratinocytes, triggers chronic skin inflammation in mice. Unlike similar inflammation resulting from arrest of nuclear factor κB activation in the epidermal cells, the effect induced by caspase-8 deficiency did not depend on TNF, IL-1, dermal macrophage function, or expression of the toll-like receptor adapter proteins MyD88 or TRIF. Both interferon regulatory factor (IRF) 3 and TANK-binding kinase were constitutively phosphorylated in the caspase-8–deficient epidermis, and knockdown of IRF3 in the epidermis-derived cells from these mice abolished the expression of up-regulated genes. Temporal and spatial analyses of the alterations in gene expression that result from caspase-8 deficiency reveal that the changes are initiated before birth, around the time that cornification develops, and occur mainly in the suprabasal layer. Finally, we found that caspase-8–deficient keratinocytes display an enhanced response to gene activation by transfected DNA. Our findings suggest that an enhanced response to endogenous activators of IRF3 in the epidermis, presumably generated in association with keratinocyte differentiation, contributes to the skin inflammatory process triggered by caspase-8 deficiency.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The cornified envelope: a model of cell death in the skin.

          The epidermis functions as a barrier against the environment by means of several layers of terminally differentiated, dead keratinocytes - the cornified layer, which forms the endpoint of epidermal differentiation and death. The cornified envelope replaces the plasma membrane of differentiating keratinocytes and consists of keratins that are enclosed within an insoluble amalgam of proteins, which are crosslinked by transglutaminases and surrounded by a lipid envelope. New insights into the molecular mechanisms and the physiological endpoints of cornification are increasing our understanding of the pathological defects of this unique form of programmed cell death, which is associated with barrier malfunctions and ichthyosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of Lps2 as a key transducer of MyD88-independent TIR signalling.

            In humans, ten Toll-like receptor (TLR) paralogues sense molecular components of microbes, initiating the production of cytokine mediators that create the inflammatory response. Using N-ethyl-N-nitrosourea, we induced a germline mutation called Lps2, which abolishes cytokine responses to double-stranded RNA and severely impairs responses to the endotoxin lipopolysaccharide (LPS), indicating that TLR3 and TLR4 might share a specific, proximal transducer. Here we identify the Lps2 mutation: a distal frameshift error in a Toll/interleukin-1 receptor/resistance (TIR) adaptor protein known as Trif or Ticam-1. Trif(Lps2) homozygotes are markedly resistant to the toxic effects of LPS, and are hypersusceptible to mouse cytomegalovirus, failing to produce type I interferons when infected. Compound homozygosity for mutations at Trif and MyD88 (a cytoplasmic TIR-domain-containing adaptor protein) loci ablates all responses to LPS, indicating that only two signalling pathways emanate from the LPS receptor. However, a Trif-independent cell population is detectable when Trif(Lps2) mutant macrophages are stimulated with LPS. This reveals that an alternative MyD88-dependent 'adaptor X' pathway is present in some, but not all, macrophages, and implies afferent immune specialization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune surveillance in the skin: mechanisms and clinical consequences

              Key Points The skin, together with other epithelial-cell interfaces with a hostile environment, supports a range of passive and active immune defence mechanisms. Cutaneous immune responses serve as a model for the study of interactions between innate and acquired immune mechanisms. Adaptive immune surveillance addresses the logistical challenge of targeting naive, effector and memory T cells to their respective sites of function by using distinct homing mechanisms at different stages of the immune response, termed primary, secondary and tertiary immune surveillance. Primary immune surveillance involves the process by which tissue dendritic cells are induced to engulf foreign particles, undergo maturation and emigrate through the afferent lymphatics to the local draining lymph node, where they encounter naive T cells recruited from the peripheral circulation. This greatly increases the efficiency with which naive T cells are exposed to antigens presented by professional antigen-presenting cells. Secondary immune surveillance involves the production and distribution of antigen-specific effector memory T cells that express homing receptors that direct their migration back to the tissue draining the lymph node where activation occurred and their participation in tissue-based immune responses. The persistence of memory T cells with both antigen and tissue specificity also protects against possible future encounters with the same pathogen, by providing a population of antigen-specific effector cells pre-targeted to the site where exposure to that pathogen might most probably recur. Tertiary immune surveillance involves the production of central memory and effector cells potentially directed to lymph nodes and tissues other than the site of primary exposure, providing broad coverage in the event that the pathogen is encountered through a different route. These concepts have implications for the understanding of both inflammatory skin disorders and the development of antitumour and antipathogen vaccine strategies.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                28 September 2009
                : 206
                : 10
                : 2161-2177
                Affiliations
                [1 ]Department of Biological Chemistry and [2 ]Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel
                [3 ]Institute of Biochemistry, Medical School Hannover, Hannover D-30625, Germany
                [4 ]Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, Giessen D-35392, Germany
                Author notes
                CORRESPONDENCE David Wallach: d.wallach@ 123456weizmann.ac.il

                A. Kovalenko, J.-C. Kim, T.-B. Kang, and A. Rajput contributed equally to this paper.

                Article
                20090616
                10.1084/jem.20090616
                2757876
                19720838
                1d2aa870-085b-4093-8f57-dcc7da3c56cf
                © 2009 Kovalenko et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 18 March 2009
                : 12 August 2009
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article