8
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revisiting the host use and phylogeny of Colastomion Baker (Hymenoptera, Braconidae, Rogadinae), with a new host record from Japan

      , , ,

      Journal of Hymenoptera Research

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report the solitary parasitism by Colastomion formosanum (Watanabe) (Hymenoptera, Braconidae, Rogadinae) on the larva of Nevrina procopia (Stoll) (Lepidoptera, Crambidae) feeding on Turpinia ternata Nakai (Staphyleaceae) in Amami Ôshima Is., Japan. This is the first host record for the genus Colastomion Baker outside of Papua New Guinea. We have also inferred the phylogenetic relationships of Colastomion species using Bayesian and maximum likelihood approaches, based on the mitochondrial cytochrome oxidase 1 gene. The results indicate two major clades–solitary and gregarious parasitoids–within Colastomion. Colastomion formosanum belongs to the clade of solitary parasitoids that specifically parasitize the crambid subfamily Spilomelinae. Plant-host-parasitoid associations and the evolutionary scenario of the host use of Colastomion are discussed.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework

          Background Structural alignment of RNAs is becoming important, since the discovery of functional non-coding RNAs (ncRNAs). Recent studies, mainly based on various approximations of the Sankoff algorithm, have resulted in considerable improvement in the accuracy of pairwise structural alignment. In contrast, for the cases with more than two sequences, the practical merit of structural alignment remains unclear as compared to traditional sequence-based methods, although the importance of multiple structural alignment is widely recognized. Results We took a different approach from a straightforward extension of the Sankoff algorithm to the multiple alignments from the viewpoints of accuracy and time complexity. As a new option of the MAFFT alignment program, we developed a multiple RNA alignment framework, X-INS-i, which builds a multiple alignment with an iterative method incorporating structural information through two components: (1) pairwise structural alignments by an external pairwise alignment method such as SCARNA or LaRA and (2) a new objective function, Four-way Consistency, derived from the base-pairing probability of every sub-aligned group at every multiple alignment stage. Conclusion The BRAliBASE benchmark showed that X-INS-i outperforms other methods currently available in the sum-of-pairs score (SPS) criterion. As a basis for predicting common secondary structure, the accuracy of the present method is comparable to or rather higher than those of the current leading methods such as RNA Sampler. The X-INS-i framework can be used for building a multiple RNA alignment from any combination of algorithms for pairwise RNA alignment and base-pairing probability. The source code is available at the webpage found in the Availability and requirements section.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions.

            In response to herbivory, plants emit specific blends of herbivore-induced plant volatiles (HIPVs). HIPVs mediate sizable arrays of interactions between plants and arthropods, microorganisms, undamaged neighboring plants or undamaged sites within the plant in various ecosystems. HIPV profiles vary according to the plant and herbivore species, and the developmental stages and conditions of the live plants and herbivores. To understand the regulatory mechanisms underling HIPV biosynthesis, the following issues are reviewed here: (i) herbivore-induced formation of plant volatile terpenoids and green leaf volatiles; (ii) initial activation of plant responses by feeding herbivores; and (iii) the downstream network of the signal transduction. To understand the ecological significance of HIPVs, we also review case studies of insect-plant and inter-/intraplant interactions mediated by HIPVs that have been documented in the field and laboratory in recent years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant responses to insect egg deposition.

              Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect defenses that involve egg parasitoids. Furthermore, we discuss the ability of plants to take insect eggs as warning signals; the eggs indicate future larval feeding damage and trigger plant changes that either directly impair larval performance or attract enemies of the larvae. We address the questions of how egg-associated cues elicit plant defenses, how the information that eggs have been laid is transmitted within a plant, and which molecular and chemical plant responses are induced by egg deposition. Finally, we highlight evolutionary aspects of the interactions between plants and insect eggs and ask how the herbivorous insect copes with egg-induced plant defenses and may avoid them by counteradaptations.
                Bookmark

                Author and article information

                Journal
                Journal of Hymenoptera Research
                JHR
                Pensoft Publishers
                1314-2607
                1070-9428
                June 29 2020
                June 29 2020
                : 77
                : 175-186
                Article
                10.3897/jhr.77.52774
                © 2020

                Comments

                Comment on this article