29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A comparison of passive hindlimb cycling and active upper-limb exercise provides new insights into systolic dysfunction after spinal cord injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Active upper-limb and passive lower-limb exercise are two interventions used in the spinal cord injury (SCI) population. Although the global cardiac responses have been previously studied, it is unclear how either exercise influences contractile cardiac function. Here, the cardiac contractile and volumetric responses to upper-limb (swim) and passive lower-limb exercise were investigated in rodents with a severe high-thoracic SCI. Animals were divided into control (CON), SCI no exercise (NO-EX), SCI passive hindlimb cycling (PHLC), or SCI swim (SWIM) groups. Severe contusion SCI was administered at the T2 level. PHLC and SWIM interventions began on day 8 postinjury and lasted 25 days. Echocardiography and dobutamine stress echocardiography were performed before and after injury. Cardiac contractile indexes were assessed in vivo at study termination via a left ventricular pressure-volume conductance catheter. Stroke volume was reduced after SCI (91 µl in the NO-EX group vs. 188 µl in the CON group, P < 0.05) and was reversed at study termination in the PHLC (167 µl) but not SWIM (90 µl) group. Rates of contraction were reduced in NO-EX versus CON groups (6,079 vs. 9,225 mmHg, respectively, P < 0.05) and were unchanged by PHLC and SWIM training. Similarly, end-systolic elastance was reduced in the NO-EX versus CON groups (0.67 vs. 1.37 mmHg/µl, respectively, P < 0.05) and was unchanged by PHLC or SWIM training. Dobutamine infusion normalized all pressure indexes in each SCI group (all P < 0.05). In conclusion, PHLC improves flow-derived cardiac indexes, whereas SWIM training displayed no cardiobeneficial effect. Pressure-derived deficits were corrected only with dobutamine, suggesting that reduced β-adrenergic stimulation is principally responsible for the impaired cardiac contractile function after SCI.NEW & NOTEWORTHY This is the first direct comparison between the cardiac changes elicited by active upper-limb or passive lower-limb exercise after spinal cord injury. Here, we demonstrate that lower-limb exercise positively influences flow-derived cardiac indexes, whereas upper-limb exercise does not. Furthermore, neither intervention corrects the cardiac contractile dysfunction associated with spinal cord injury.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Editorial

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats.

            Ventricular pressure-volume relationships have become well established as the most rigorous and comprehensive ways to assess intact heart function. Thanks to advances in miniature sensor technology, this approach has been successfully translated to small rodents, allowing for detailed characterization of cardiovascular function in genetically engineered mice, testing effects of pharmacotherapies and studying disease conditions. This method is unique for providing measures of left ventricular (LV) performance that are more specific to the heart and less affected by vascular loading conditions. Here we present descriptions and movies for procedures employing this method (anesthesia, intubation and surgical techniques, calibrations). We also provide examples of hemodynamics measurements obtained from normal mice/rats, and from animals with cardiac hypertrophy/heart failure, and describe values for various useful load-dependent and load-independent indexes of LV function obtained using different types of anesthesia. The completion of the protocol takes 1-4 h (depending on the experimental design/end points).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Left ventricular interaction with arterial load studied in isolated canine ventricle.

              We developed a framework of analysis to predict the stroke volume (SV) resulting from the complex mechanical interaction between the ventricle and its arterial system. In this analysis, we characterized both the left ventricle and the arterial system by their end systolic pressure (Ps)-SV relationships and predicted SV from the intersection of the two relationship lines. The final output of the analysis was a formula that gives the SV for a given preload as a function of the ventricular properties (Ees, V0, and ejection time) and the arterial impedance properties (modeled in terms of a 3-element Windkessel). To test the validity of this framework for analyzing the ventriculoarterial interaction, we first determined the ventricular properties under a specific set of control arterial impedance conditions. With the ventricular properties thus obtained, we used the analytical formula to predict SVs under various combinations of noncontrol arterial impedance conditions and four preloads. The predicted SVs were compared with those measured while actually imposing the identical set of arterial impedance conditions and preload in eight isolated canine ventricles. The predicted SV was highly correlated (P less than 0.0001) with the measured one in all ventricles. The average correlation coefficient was 0.985 +/- 0.004 (SE), the slope 1.00 +/- 0.04, and the gamma-axis intercept 1.0 +/- 0.2 ml, indicating the accuracy of the prediction. We conclude that the representations of ventricle and arterial system by their Ps-SV relationships are useful in understanding how these two systems determine SV when they are coupled and interact.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Heart and Circulatory Physiology
                American Journal of Physiology-Heart and Circulatory Physiology
                American Physiological Society
                0363-6135
                1522-1539
                November 2017
                November 2017
                : 313
                : 5
                : H861-H870
                Article
                10.1152/ajpheart.00046.2017
                28710067
                1d2cca19-7a9a-4ef9-93a1-b26f747fe789
                © 2017
                History

                Comments

                Comment on this article