4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bioremediation potential of a perchlorate-enriched sewage sludge consortium

      ,
      Chemosphere
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Reduction of (per)chlorate by a novel organism isolated from paper mill waste.

          As part of a study on the microbiology of chlorate reduction, several new dissimilatory chlorate-reducing bacteria were isolated from a broad diversity of environments. One of these, strain CKB, was selected for a more complete characterization. Strain CKB was enriched and isolated from paper mill waste with acetate as the sole electron donor and chlorate as the sole electron acceptor. Strain CKB is a completely oxidizing, non-fermentative, Gram-negative, facultative anaerobe. Cells of strain CKB are 0.5 x 2 microm and are highly motile, with a single polar flagellum. In addition to acetate, strain CKB can use propionate, butyrate, lactate, succinate, fumarate, malate or yeast extract as electron donors, with chlorate as the sole electron acceptor. Strain CKB can also couple chlorate reduction to the oxidation of ferrous iron, sulphide, or the reduced form of the humic substances analogue 2,6-anthrahydroquinone disulphonate. Fe(II) is oxidized to insoluble amorphous Fe(II) oxide, whereas sulphide is oxidized to elemental sulphur. Growth is not associated with this metabolism, even when small quantities of acetate are added as a potential carbon source. In addition to chlorate, strain CKB can also couple acetate oxidation to the reduction of oxygen or perchlorate. Chlorate is completely reduced to chloride. Strain CKB has an optimum temperature of 35 degrees C, a pH optimum of 7.5 and a salinity optimum of 1% NaCl. Strain CKB can grow in chlorate and perchlorate concentrations of 80 or 20 mM respectively. Under anaerobic conditions, strain CKB can dismutate chlorite into chloride and O2, and is only the second organism shown to be capable of this metabolism. Oxidized minus reduced spectra of whole-cell suspensions of strain CKB showed absorbance maxima at 423, 523 and 552nm, which are indicative of the presence of c-type cytochrome(s). Analysis of the complete sequence of the 16S rDNA indicates that strain CKB is a member of the beta subclass of the Proteobacteria. The phototroph Rhodocyclus tenuis is the closest known relative. When tested, strain CKB could not grow by phototrophy and did not contain bacteriochlorophyll. Phenotypically and phylogenetically, strain CKB differs from all other described bacteria and represents the type strain of a new genus and species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position.

            Previous studies on the ubiquity and diversity of microbial (per)chlorate reduction resulted in the isolation of 20 new strains of dissimilatory (per)chlorate-reducing bacteria. Phylogenetic analysis revealed that all of the isolates were members of the Proteobacteria with representatives in the alpha-, beta- and gamma-subclasses. The majority of the new isolates were located in the beta-subclass and were closely related to each other and to the phototrophic Rhodocyclus species. Here an in-depth analysis of these organisms which form two distinct monophyletic groups within the Rhodocyclus assemblage is presented. Two new genera, Dechloromonas and Dechlorosoma, are proposed for these beta-subclass lineages which represent the predominant (per)chlorate-reducing bacteria in the environment. The type species and strains for these new genera are Dechloromonas agitata strain CKBT and Dechlorosoma suillum strain PST, respectively.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation

                Bookmark

                Author and article information

                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                January 2005
                January 2005
                : 58
                : 1
                : 83-90
                Article
                10.1016/j.chemosphere.2004.09.001
                1d2da30e-38d8-421c-86bb-141998775024
                © 2005

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article