130
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent advent of DNA sequencing technologies facilitates the use of genome sequencing data that provide means for more informative and precise classification and identification of members of the Bacteria and Archaea. Because the current species definition is based on the comparison of genome sequences between type and other strains in a given species, building a genome database with correct taxonomic information is of paramount need to enhance our efforts in exploring prokaryotic diversity and discovering novel species as well as for routine identifications. Here we introduce an integrated database, called EzBioCloud, that holds the taxonomic hierarchy of the Bacteria and Archaea, which is represented by quality-controlled 16S rRNA gene and genome sequences. Whole-genome assemblies in the NCBI Assembly Database were screened for low quality and subjected to a composite identification bioinformatics pipeline that employs gene-based searches followed by the calculation of average nucleotide identity. As a result, the database is made of 61 700 species/phylotypes, including 13 132 with validly published names, and 62 362 whole-genome assemblies that were identified taxonomically at the genus, species and subspecies levels. Genomic properties, such as genome size and DNA G+C content, and the occurrence in human microbiome data were calculated for each genus or higher taxa. This united database of taxonomy, 16S rRNA gene and genome sequences, with accompanying bioinformatics tools, should accelerate genome-based classification and identification of members of the Bacteria and Archaea. The database and related search tools are available at www.ezbiocloud.net/.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species.

          Despite recent advances in commercially optimized identification systems, bacterial identification remains a challenging task in many routine microbiological laboratories, especially in situations where taxonomically novel isolates are involved. The 16S rRNA gene has been used extensively for this task when coupled with a well-curated database, such as EzTaxon, containing sequences of type strains of prokaryotic species with validly published names. Although the EzTaxon database has been widely used for routine identification of prokaryotic isolates, sequences from uncultured prokaryotes have not been considered. Here, the next generation database, named EzTaxon-e, is formally introduced. This new database covers not only species within the formal nomenclatural system but also phylotypes that may represent species in nature. In addition to an identification function based on Basic Local Alignment Search Tool (blast) searches and pairwise global sequence alignments, a new objective method of assessing the degree of completeness in sequencing is proposed. All sequences that are held in the EzTaxon-e database have been subjected to phylogenetic analysis and this has resulted in a complete hierarchical classification system. It is concluded that the EzTaxon-e database provides a useful taxonomic backbone for the identification of cultured and uncultured prokaryotes and offers a valuable means of communication among microbiologists who routinely encounter taxonomically novel isolates. The database and its analytical functions can be found at http://eztaxon-e.ezbiocloud.net/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing.

            The Gram-negative bacteria Klebsiella pneumoniae is a major cause of nosocomial infections, primarily among immunocompromised patients. The emergence of strains resistant to carbapenems has left few treatment options, making infection containment critical. In 2011, the U.S. National Institutes of Health Clinical Center experienced an outbreak of carbapenem-resistant K. pneumoniae that affected 18 patients, 11 of whom died. Whole-genome sequencing was performed on K. pneumoniae isolates to gain insight into why the outbreak progressed despite early implementation of infection control procedures. Integrated genomic and epidemiological analysis traced the outbreak to three independent transmissions from a single patient who was discharged 3 weeks before the next case became clinically apparent. Additional genomic comparisons provided evidence for unexpected transmission routes, with subsequent mining of epidemiological data pointing to possible explanations for these transmissions. Our analysis demonstrates that integration of genomic and epidemiological data can yield actionable insights and facilitate the control of nosocomial transmission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea.

              The polyphasic approach used today in the taxonomy and systematics of the Bacteria and Archaea includes the use of phenotypic, chemotaxonomic and genotypic data. The use of 16S rRNA gene sequence data has revolutionized our understanding of the microbial world and led to a rapid increase in the number of descriptions of novel taxa, especially at the species level. It has allowed in many cases for the demarcation of taxa into distinct species, but its limitations in a number of groups have resulted in the continued use of DNA-DNA hybridization. As technology has improved, next-generation sequencing (NGS) has provided a rapid and cost-effective approach to obtaining whole-genome sequences of microbial strains. Although some 12,000 bacterial or archaeal genome sequences are available for comparison, only 1725 of these are of actual type strains, limiting the use of genomic data in comparative taxonomic studies when there are nearly 11,000 type strains. Efforts to obtain complete genome sequences of all type strains are critical to the future of microbial systematics. The incorporation of genomics into the taxonomy and systematics of the Bacteria and Archaea coupled with computational advances will boost the credibility of taxonomy in the genomic era. This special issue of International Journal of Systematic and Evolutionary Microbiology contains both original research and review articles covering the use of genomic sequence data in microbial taxonomy and systematics. It includes contributions on specific taxa as well as outlines of approaches for incorporating genomics into new strain isolation to new taxon description workflows.
                Bookmark

                Author and article information

                Journal
                Int J Syst Evol Microbiol
                Int. J. Syst. Evol. Microbiol
                IJSEM
                International Journal of Systematic and Evolutionary Microbiology
                Microbiology Society
                1466-5026
                1466-5034
                May 2017
                30 May 2017
                30 May 2017
                : 67
                : 5
                : 1613-1617
                Affiliations
                [1]Department of ChunLab, Inc, Seoul National University , Seoul, Republic of Korea
                Author notes
                *Correspondence: Jongsik Chun, jchun@ 123456snu.ac.kr or jchun@ 123456chunlab.com
                Article
                001755
                10.1099/ijsem.0.001755
                5563544
                28005526
                1d30fbcb-cfaf-492e-bc9f-4d79ed43508a
                © 2017 IUMS

                This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 November 2016
                : 20 December 2016
                Categories
                Research Article
                Evolution, Phylogeny and Biodiversity

                Microbiology & Virology
                16s rrna gene,genome,average nucleotide identity,identification,database
                Microbiology & Virology
                16s rrna gene, genome, average nucleotide identity, identification, database

                Comments

                Comment on this article