4
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Need for Speed: From Human SARS-CoV-2 Samples to Protective and Efficacious Antibodies in Weeks

      news
      1 , 2 , , 3 , 1
      Cell
      Elsevier Inc.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of SARS-CoV-2 has driven a global research effort to identify medical countermeasures at an unprecedented pace. In this issue of Cell, Cao et al. identify thousands of SARS-CoV-2 neutralizing antibodies from convalescent donors. The authors improve our understanding of immunity against the coronavirus spike glycoprotein and detail novel pathways to rapidly identify and characterize protective monoclonal antibodies.

          Abstract

          The emergence of SARS-CoV-2 has driven a global research effort to identify medical countermeasures at an unprecedented pace. In this issue of Cell, Cao et al. identify thousands of SARS-CoV-2 neutralizing antibodies from convalescent donors. The authors improve our understanding of immunity against the coronavirus spike glycoprotein and detail novel pathways to rapidly identify and characterize protective monoclonal antibodies.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

          Structure of the nCoV trimeric spike The World Health Organization has declared the outbreak of a novel coronavirus (2019-nCoV) to be a public health emergency of international concern. The virus binds to host cells through its trimeric spike glycoprotein, making this protein a key target for potential therapies and diagnostics. Wrapp et al. determined a 3.5-angstrom-resolution structure of the 2019-nCoV trimeric spike protein by cryo–electron microscopy. Using biophysical assays, the authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor. They also tested three antibodies known to bind to the SARS-CoV spike protein but did not detect binding to the 2019-nCoV spike protein. These studies provide valuable information to guide the development of medical counter-measures for 2019-nCoV. Science, this issue p. 1260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein

            Summary The emergence of SARS-CoV-2 has resulted in >90,000 infections and >3,000 deaths. Coronavirus spike (S) glycoproteins promote entry into cells and are the main target of antibodies. We show that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, correlating with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs. We determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer, providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal antibodies potently inhibited SARS-CoV-2 S mediated entry into cells, indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2

              Developing therapeutics against SARS-CoV-2 could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein, but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from ten convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. An mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2, but does not bind the RBD. We defined the epitope of 4A8 as the N terminal domain (NTD) of the S protein by determining its cryo-EM structure in complex with the S protein to an overall resolution of 3.1 Angstrom and local resolution of 3.3 Angstrom for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cell
                Cell
                Cell
                Elsevier Inc.
                0092-8674
                1097-4172
                9 July 2020
                9 July 2020
                9 July 2020
                : 182
                : 1
                : 7-9
                Affiliations
                [1 ]Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
                [2 ]Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
                [3 ]Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
                Author notes
                []Corresponding author gjoyce@ 123456eidresearch.org
                Article
                S0092-8674(20)30748-0
                10.1016/j.cell.2020.06.017
                7346785
                32649880
                1d46b52b-875f-4886-bb48-cd239e280631
                © 2020 Elsevier Inc.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article