72
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Analysis of Mutant Alleles of Different Strength Reveals Multiple Functions of Topoisomerase 2 in Regulation of Drosophila Chromosome Structure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Topoisomerase II is a major component of mitotic chromosomes but its role in the assembly and structural maintenance of chromosomes is rather controversial, as different chromosomal phenotypes have been observed in various organisms and in different studies on the same organism. In contrast to vertebrates that harbor two partially redundant Topo II isoforms, Drosophila and yeasts have a single Topo II enzyme. In addition, fly chromosomes, unlike those of yeast, are morphologically comparable to vertebrate chromosomes. Thus, Drosophila is a highly suitable system to address the role of Topo II in the assembly and structural maintenance of chromosomes. Here we show that modulation of Top2 function in living flies by means of mutant alleles of different strength and in vivo RNAi results in multiple cytological phenotypes. In weak Top2 mutants, meiotic chromosomes of males exhibit strong morphological abnormalities and dramatic segregation defects, while mitotic chromosomes of larval brain cells are not affected. In mutants of moderate strength, mitotic chromosome organization is normal, but anaphases display frequent chromatin bridges that result in chromosome breaks and rearrangements involving specific regions of the Y chromosome and 3L heterochromatin. Severe Top2 depletion resulted in many aneuploid and polyploid mitotic metaphases with poorly condensed heterochromatin and broken chromosomes. Finally, in the almost complete absence of Top2, mitosis in larval brains was virtually suppressed and in the rare mitotic figures observed chromosome morphology was disrupted. These results indicate that different residual levels of Top2 in mutant cells can result in different chromosomal phenotypes, and that the effect of a strong Top2 depletion can mask the effects of milder Top2 reductions. Thus, our results suggest that the previously observed discrepancies in the chromosomal phenotypes elicited by Topo II downregulation in vertebrates might depend on slight differences in Topo II concentration and/or activity.

          Author Summary

          Type II topoisomerases (Topo II) are enzymes that disentangle DNA molecules during essential cellular processes such as DNA replication, chromosome condensation and mitotic cell division. Topo II is a major component of mitotic chromosomes and it is a well known target for cancer chemotherapy. Topo II inhibitors block the Topo II enzymatic activity leading to extensive DNA damage, which ultimately kills the cancer cell. Thus, investigating the role of Topo II in the assembly and structural maintenance of chromosomes is not only relevant to understand chromosome biology but might also have a translational impact on cancer therapy. Here we used Drosophila as model system to analyze the effect of Topo II depletion on chromosome stability. We show that the chromosomal phenotypes of mutant flies vary with the amount of residual Topo II, ranging from site-specific chromosome breaks, variations in chromosome number (aneuploidy and poliploidy) and dramatic defects in chromosome morphology. The chromosomal phenotypes observed in flies recapitulate all phenotypes seen in Topo II-depleted vertebrate chromosomes, reconciling the phenotypic discrepancies reported in previous studies. In addition, our finding that the Topo II dependent phenotypes vary with the residual amount of the enzyme provides useful information on the possible outcome of cancer therapy with Topo II inhibitors.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Drosophila dosage compensation: a complex voyage to the X chromosome.

          Dosage compensation is the crucial process that equalizes gene expression from the X chromosome between males (XY) and females (XX). In Drosophila, the male-specific lethal (MSL) ribonucleoprotein complex mediates dosage compensation by upregulating transcription from the single male X chromosome approximately twofold. A key challenge is to understand how the MSL complex distinguishes the X chromosome from autosomes. Recent studies suggest that this occurs through a multi-step targeting mechanism that involves DNA sequence elements and epigenetic marks associated with transcription. This review will discuss the relative contributions of sequence elements and transcriptional marks to the complete pattern of MSL complex binding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo.

            Drosophila ISWI, a highly conserved member of the SWI2/SNF2 family of ATPases, is the catalytic subunit of three chromatin-remodeling complexes: NURF, CHRAC, and ACF. To clarify the biological functions of ISWI, we generated and characterized null and dominant-negative ISWI mutations. We found that ISWI mutations affect both cell viability and gene expression during Drosophila development. ISWI mutations also cause striking alterations in the structure of the male X chromosome. The ISWI protein does not colocalize with RNA Pol II on salivary gland polytene chromosomes, suggesting a possible role for ISWI in transcriptional repression. These findings reveal novel functions for the ISWI ATPase and underscore its importance in chromatin remodeling in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe.

              We show that DNA topoisomerase II (topo II) is continuously required for mitotic chromosome changes in Schizosaccharomyces pombe. We constructed cold-sensitive (cs) or temperature-sensitive (ts) strains mutated in the genes coding for topo II (top2) and beta-tubulin (nda3). The ATP-dependent activity of the top2cs gene product is cs in vitro. The cloned top2cs gene sequence predicts an amino acid substitution. A cs top2-cs nda3 double mutant at 20 degrees C shows long, entangled chromosomes, which condense and separate upon the shift to permissive temperatures. If spindle formation is prevented at permissive temperatures, the chromosomes condense but do not separate. Thus topo II is required for final chromosome condensation; moreover, pulse-shift experiments show that topo II is required for chromatid disjuction. Experiments with ts top2-cs nda3 cells show that topo II is also required for chromosome separation in anaphase: inactivation of topo II and activation of beta-tubulin allow normal spindle formation but result in "streaked" chromosomes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2014
                23 October 2014
                : 10
                : 10
                : e1004739
                Affiliations
                [1 ]Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
                [2 ]Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VM EB SB MG. Performed the experiments: VM EB SB RL RP. Analyzed the data: VM EB SB MG RL RP. Wrote the paper: SB MG.

                Article
                PGENETICS-D-14-01022
                10.1371/journal.pgen.1004739
                4207652
                25340516
                1d5bec96-9c4b-416b-8051-8908c1256afb
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 April 2014
                : 8 September 2014
                Page count
                Pages: 20
                Funding
                This work was supported by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC, IG10793) and from the Ministry of Education and Science of Russian Federation (14.Z50.31.0005) to MG, and PRIN/MIUR to SB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Genetics
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. Our data are all contained within the paper and/or Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article