49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways.

          Highlights

          • Aging is associated with alterations to myocardial collagen and cardiac function.

          • Collagen remodelling with disease is age-dependent.

          • Collagen remodelling mediators may become targets for disease treatment in elderly.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-34a regulates cardiac ageing and function.

          Ageing is the predominant risk factor for cardiovascular diseases and contributes to a significantly worse outcome in patients with acute myocardial infarction. MicroRNAs (miRNAs) have emerged as crucial regulators of cardiovascular function and some miRNAs have key roles in ageing. We propose that altered expression of miRNAs in the heart during ageing contributes to the age-dependent decline in cardiac function. Here we show that miR-34a is induced in the ageing heart and that in vivo silencing or genetic deletion of miR-34a reduces age-associated cardiomyocyte cell death. Moreover, miR-34a inhibition reduces cell death and fibrosis following acute myocardial infarction and improves recovery of myocardial function. Mechanistically, we identified PNUTS (also known as PPP1R10) as a novel direct miR-34a target, which reduces telomere shortening, DNA damage responses and cardiomyocyte apoptosis, and improves functional recovery after acute myocardial infarction. Together, these results identify age-induced expression of miR-34a and inhibition of its target PNUTS as a key mechanism that regulates cardiac contractile function during ageing and after acute myocardial infarction, by inducing DNA damage responses and telomere attrition.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction.

              Inflammatory mechanisms have been proposed to be important in heart failure (HF), and cytokines have been implicated to add to the progression of HF. However, it is unclear whether such mechanisms are already activated when hypertrophied hearts still appear well-compensated and whether such early mechanisms contribute to the development of HF. In a comprehensive microarray study, galectin-3 emerged as the most robustly overexpressed gene in failing versus functionally compensated hearts from homozygous transgenic TGRmRen2-27 (Ren-2) rats. Myocardial biopsies obtained at an early stage of hypertrophy before apparent HF showed that expression of galectin-3 was increased specifically in the rats that later rapidly developed HF. Galectin-3 colocalized with activated myocardial macrophages. We found galectin-3-binding sites in rat cardiac fibroblasts and the extracellular matrix. Recombinant galectin-3 induced cardiac fibroblast proliferation, collagen production, and cyclin D1 expression. A 4-week continuous infusion of low-dose galectin-3 into the pericardial sac of healthy Sprague-Dawley rats led to left ventricular dysfunction, with a 3-fold differential increase of collagen I over collagen III. Myocardial galectin-3 expression was increased in aortic stenosis patients with depressed ejection fraction. This study shows that an early increase in galectin-3 expression identifies failure-prone hypertrophied hearts. Galectin-3, a macrophage-derived mediator, induces cardiac fibroblast proliferation, collagen deposition, and ventricular dysfunction. This implies that HF therapy aimed at inflammatory responses may need to be targeted at the early stages of HF and probably needs to antagonize multiple inflammatory mediators, including galectin-3.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Mol Cell Cardiol
                J. Mol. Cell. Cardiol
                Journal of Molecular and Cellular Cardiology
                Academic Press
                0022-2828
                1095-8584
                1 April 2016
                April 2016
                : 93
                : 175-185
                Affiliations
                Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, 3.06 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
                Author notes
                [* ]Corresponding author. margaux.horn@ 123456manchester.ac.uk
                Article
                S0022-2828(15)30110-3
                10.1016/j.yjmcc.2015.11.005
                4945757
                26578393
                1d64b965-287c-45b1-9f14-f7a753c15bac
                © 2015 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 14 September 2015
                : 2 November 2015
                : 4 November 2015
                Categories
                Review Article

                Cardiovascular Medicine
                aging,extracellular matrix,collagen,fibrosis,heart failure
                Cardiovascular Medicine
                aging, extracellular matrix, collagen, fibrosis, heart failure

                Comments

                Comment on this article