Blog
About

64
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In ecosystems, a variety of biological, chemical and physical stressors may act in combination to induce illness in populations of living organisms. While recent surveys reported that parasite-insecticide interactions can synergistically and negatively affect honeybee survival, the importance of sequence in exposure to stressors has hardly received any attention. In this work, Western honeybees ( Apis mellifera) were sequentially or simultaneously infected by the microsporidian parasite Nosema ceranae and chronically exposed to a sublethal dose of the insecticide fipronil, respectively chosen as biological and chemical stressors. Interestingly, every combination tested led to a synergistic effect on honeybee survival, with the most significant impacts when stressors were applied at the emergence of honeybees. Our study presents significant outcomes on beekeeping management but also points out the potential risks incurred by any living organism frequently exposed to both pathogens and insecticides in their habitat.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: not found

          Global pollinator declines: trends, impacts and drivers.

          Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A metagenomic survey of microbes in honey bee colony collapse disorder.

            In colony collapse disorder (CCD), honey bee colonies inexplicably lose their workers. CCD has resulted in a loss of 50 to 90% of colonies in beekeeping operations across the United States. The observation that irradiated combs from affected colonies can be repopulated with naive bees suggests that infection may contribute to CCD. We used an unbiased metagenomic approach to survey microflora in CCD hives, normal hives, and imported royal jelly. Candidate pathogens were screened for significance of association with CCD by the examination of samples collected from several sites over a period of 3 years. One organism, Israeli acute paralysis virus of bees, was strongly correlated with CCD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health

              Background Recent declines in honey bees for crop pollination threaten fruit, nut, vegetable and seed production in the United States. A broad survey of pesticide residues was conducted on samples from migratory and other beekeepers across 23 states, one Canadian province and several agricultural cropping systems during the 2007–08 growing seasons. Methodology/Principal Findings We have used LC/MS-MS and GC/MS to analyze bees and hive matrices for pesticide residues utilizing a modified QuEChERS method. We have found 121 different pesticides and metabolites within 887 wax, pollen, bee and associated hive samples. Almost 60% of the 259 wax and 350 pollen samples contained at least one systemic pesticide, and over 47% had both in-hive acaricides fluvalinate and coumaphos, and chlorothalonil, a widely-used fungicide. In bee pollen were found chlorothalonil at levels up to 99 ppm and the insecticides aldicarb, carbaryl, chlorpyrifos and imidacloprid, fungicides boscalid, captan and myclobutanil, and herbicide pendimethalin at 1 ppm levels. Almost all comb and foundation wax samples (98%) were contaminated with up to 204 and 94 ppm, respectively, of fluvalinate and coumaphos, and lower amounts of amitraz degradates and chlorothalonil, with an average of 6 pesticide detections per sample and a high of 39. There were fewer pesticides found in adults and brood except for those linked with bee kills by permethrin (20 ppm) and fipronil (3.1 ppm). Conclusions/Significance The 98 pesticides and metabolites detected in mixtures up to 214 ppm in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary pollinator. This represents over half of the maximum individual pesticide incidences ever reported for apiaries. While exposure to many of these neurotoxicants elicits acute and sublethal reductions in honey bee fitness, the effects of these materials in combinations and their direct association with CCD or declining bee health remains to be determined.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 March 2012
                2012
                : 2
                Affiliations
                [1 ]simpleClermont Université, Université Blaise Pascal , Laboratoire "Microorganismes : Génome et Environnement", BP 10448, 63000 Clermont-Ferrand, France
                [2 ]simpleCNRS, UMR 6023 , LMGE, 63177 Aubière, France
                [3 ]simpleINRA, UMR 406 Abeilles & Environnement , Laboratoire de Toxicologie Environnementale, Site Agroparc, 84914 Avignon, France
                Author notes
                Article
                srep00326
                10.1038/srep00326
                3310228
                22442753
                Copyright © 2012, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article