3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Radiation doses and fractionation schedules in non-low-risk ductal carcinoma in situ in the breast (BIG 3–07/TROG 07.01): a randomised, factorial, multicentre, open-label, phase 3 study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial

          Summary Background We aimed to identify a five-fraction schedule of adjuvant radiotherapy (radiation therapy) delivered in 1 week that is non-inferior in terms of local cancer control and is as safe as an international standard 15-fraction regimen after primary surgery for early breast cancer. Here, we present 5-year results of the FAST-Forward trial. Methods FAST-Forward is a multicentre, phase 3, randomised, non-inferiority trial done at 97 hospitals (47 radiotherapy centres and 50 referring hospitals) in the UK. Patients aged at least 18 years with invasive carcinoma of the breast (pT1–3, pN0–1, M0) after breast conservation surgery or mastectomy were eligible. We randomly allocated patients to either 40 Gy in 15 fractions (over 3 weeks), 27 Gy in five fractions (over 1 week), or 26 Gy in five fractions (over 1 week) to the whole breast or chest wall. Allocation was not masked because of the nature of the intervention. The primary endpoint was ipsilateral breast tumour relapse; assuming a 2% 5-year incidence for 40 Gy, non-inferiority was predefined as ≤1·6% excess for five-fraction schedules (critical hazard ratio [HR] of 1·81). Normal tissue effects were assessed by clinicians, patients, and from photographs. This trial is registered at isrctn.com, ISRCTN19906132. Findings Between Nov 24, 2011, and June 19, 2014, we recruited and obtained consent from 4096 patients from 97 UK centres, of whom 1361 were assigned to the 40 Gy schedule, 1367 to the 27 Gy schedule, and 1368 to the 26 Gy schedule. At a median follow-up of 71·5 months (IQR 71·3 to 71·7), the primary endpoint event occurred in 79 patients (31 in the 40 Gy group, 27 in the 27 Gy group, and 21 in the 26 Gy group); HRs versus 40 Gy in 15 fractions were 0·86 (95% CI 0·51 to 1·44) for 27 Gy in five fractions and 0·67 (0·38 to 1·16) for 26 Gy in five fractions. 5-year incidence of ipsilateral breast tumour relapse after 40 Gy was 2·1% (1·4 to 3·1); estimated absolute differences versus 40 Gy in 15 fractions were −0·3% (−1·0 to 0·9) for 27 Gy in five fractions (probability of incorrectly accepting an inferior five-fraction schedule: p=0·0022 vs 40 Gy in 15 fractions) and −0·7% (−1·3 to 0·3) for 26 Gy in five fractions (p=0·00019 vs 40 Gy in 15 fractions). At 5 years, any moderate or marked clinician-assessed normal tissue effects in the breast or chest wall was reported for 98 of 986 (9·9%) 40 Gy patients, 155 (15·4%) of 1005 27 Gy patients, and 121 of 1020 (11·9%) 26 Gy patients. Across all clinician assessments from 1–5 years, odds ratios versus 40 Gy in 15 fractions were 1·55 (95% CI 1·32 to 1·83, p<0·0001) for 27 Gy in five fractions and 1·12 (0·94 to 1·34, p=0·20) for 26 Gy in five fractions. Patient and photographic assessments showed higher normal tissue effect risk for 27 Gy versus 40 Gy but not for 26 Gy versus 40 Gy. Interpretation 26 Gy in five fractions over 1 week is non-inferior to the standard of 40 Gy in 15 fractions over 3 weeks for local tumour control, and is as safe in terms of normal tissue effects up to 5 years for patients prescribed adjuvant local radiotherapy after primary surgery for early-stage breast cancer. Funding National Institute for Health Research Health Technology Assessment Programme.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials.

            5-year results of the UK Standardisation of Breast Radiotherapy (START) trials suggested that lower total doses of radiotherapy delivered in fewer, larger doses (fractions) are at least as safe and effective as the historical standard regimen (50 Gy in 25 fractions) for women after primary surgery for early breast cancer. In this prespecified analysis, we report the 10-year follow-up of the START trials testing 13 fraction and 15 fraction regimens. From 1999 to 2002, women with completely excised invasive breast cancer (pT1-3a, pN0-1, M0) were enrolled from 35 UK radiotherapy centres. Patients were randomly assigned to a treatment regimen after primary surgery followed by chemotherapy and endocrine treatment (where prescribed). Randomisation was computer-generated and stratified by centre, type of primary surgery (breast-conservation surgery or mastectomy), and tumour bed boost radiotherapy. In START-A, a regimen of 50 Gy in 25 fractions over 5 weeks was compared with 41·6 Gy or 39 Gy in 13 fractions over 5 weeks. In START-B, a regimen of 50 Gy in 25 fractions over 5 weeks was compared with 40 Gy in 15 fractions over 3 weeks. Eligibility criteria included age older than 18 years and no immediate surgical reconstruction. Primary endpoints were local-regional tumour relapse and late normal tissue effects. Analysis was by intention to treat. Follow-up data are still being collected. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN59368779. START-A enrolled 2236 women. Median follow-up was 9·3 years (IQR 8·0-10·0), after which 139 local-regional relapses had occurred. 10-year rates of local-regional relapse did not differ significantly between the 41·6 Gy and 50 Gy regimen groups (6·3%, 95% CI 4·7-8·5 vs 7·4%, 5·5-10·0; hazard ratio [HR] 0·91, 95% CI 0·59-1·38; p=0·65) or the 39 Gy (8·8%, 95% CI 6·7-11·4) and 50 Gy regimen groups (HR 1·18, 95% CI 0·79-1·76; p=0·41). In START-A, moderate or marked breast induration, telangiectasia, and breast oedema were significantly less common normal tissue effects in the 39 Gy group than in the 50 Gy group. Normal tissue effects did not differ significantly between 41·6 Gy and 50 Gy groups. START-B enrolled 2215 women. Median follow-up was 9·9 years (IQR 7·5-10·1), after which 95 local-regional relapses had occurred. The proportion of patients with local-regional relapse at 10 years did not differ significantly between the 40 Gy group (4·3%, 95% CI 3·2-5·9) and the 50 Gy group (5·5%, 95% CI 4·2-7·2; HR 0·77, 95% CI 0·51-1·16; p=0·21). In START-B, breast shrinkage, telangiectasia, and breast oedema were significantly less common normal tissue effects in the 40 Gy group than in the 50 Gy group. Long-term follow-up confirms that appropriately dosed hypofractionated radiotherapy is safe and effective for patients with early breast cancer. The results support the continued use of 40 Gy in 15 fractions, which has already been adopted by most UK centres as the standard of care for women requiring adjuvant radiotherapy for invasive early breast cancer. Cancer Research UK, UK Medical Research Council, UK Department of Health. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term results of hypofractionated radiation therapy for breast cancer.

              The optimal fractionation schedule for whole-breast irradiation after breast-conserving surgery is unknown. We conducted a study to determine whether a hypofractionated 3-week schedule of whole-breast irradiation is as effective as a 5-week schedule. Women with invasive breast cancer who had undergone breast-conserving surgery and in whom resection margins were clear and axillary lymph nodes were negative were randomly assigned to receive whole-breast irradiation either at a standard dose of 50.0 Gy in 25 fractions over a period of 35 days (the control group) or at a dose of 42.5 Gy in 16 fractions over a period of 22 days (the hypofractionated-radiation group). The risk of local recurrence at 10 years was 6.7% among the 612 women assigned to standard irradiation as compared with 6.2% among the 622 women assigned to the hypofractionated regimen (absolute difference, 0.5 percentage points; 95% confidence interval [CI], -2.5 to 3.5). At 10 years, 71.3% of women in the control group as compared with 69.8% of the women in the hypofractionated-radiation group had a good or excellent cosmetic outcome (absolute difference, 1.5 percentage points; 95% CI, -6.9 to 9.8). Ten years after treatment, accelerated, hypofractionated whole-breast irradiation was not inferior to standard radiation treatment in women who had undergone breast-conserving surgery for invasive breast cancer with clear surgical margins and negative axillary nodes. (ClinicalTrials.gov number, NCT00156052.) 2010 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                The Lancet
                The Lancet
                Elsevier BV
                01406736
                August 2022
                August 2022
                : 400
                : 10350
                : 431-440
                Article
                10.1016/S0140-6736(22)01246-6
                35934006
                1d777143-29a6-4aec-9f29-10eb74a35b44
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article