Blog
About

4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry

      Read this article at

      ScienceOpenPublisherDOAJ
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The application of matrix information geometry to radar signal processing and target detection is a new and interesting subject. Wake vortices are Doppler-spread after Fourier transform. The traditional Moving Target Detection (MTD) method cannot adequately accumulate returns power of the whole spectrum. Based on matrix information geometry, a matrix Constant False Alarm Rate (CFAR) detection method is proposed to improve the detection performance of a weak wake target. In this method, covariance matrices of the observed data can be constructed into a matrix manifold; compared with CFAR detection, the geodesic distance between the covariance matrix in the detection cell and the mean of covariance matrices in the secondary cell is regarded as the detection statistics. Using simulated wake vortices, the return data in background noise and the iterative estimation performance of Riemannian mean are analyzed; the geodesic distance of covariance matrices of target return and noise with varying signal-noise rate is analyzed; and the detection performance of the matrix CFAR and the conventional MTD method is compared.

          Related collections

          Author and article information

          Journal
          Journal of Radars
          Chinese Academy of Sciences
          01 December 2017
          : 6
          : 6
          : 699-708
          Affiliations
          [1 ] ①(Air Force Early Warning Academy, Wuhan 430019, China)
          [2 ] ②(School of Electronic Science and Engineering, National University of Denfense Technology, Changsha 410073, China)
          Article
          9bb814072bba46d48957a476a396d934
          10.12000/JR17058

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Categories
          Technology (General)
          T1-995

          Comments

          Comment on this article