13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bacterial conjugation: a two-step mechanism for DNA transport

      , , ,
      Molecular Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial conjugation is a promiscuous DNA transport mechanism. Conjugative plasmids transfer themselves between most bacteria, thus being one of the main causal agents of the spread of antibiotic resistance among pathogenic bacteria. Moreover, DNA can be transferred conjugatively into eukaryotic host cells. In this review, we aim to address several basic questions regarding the DNA transfer mechanism. Conjugation can be visualized as a DNA rolling-circle replication (RCR) system linked to a type IV secretion system (T4SS), the latter being macromolecular transporters widely involved in pathogenic mechanisms. The scheme 'replication + secretion' suggests how the mechanism would work on the DNA substrate and at the bacterial membrane. But, how do these two parts come into contact? Furthermore, how is the DNA transported? T4SS are known to be involved in protein secretion in different organisms, but DNA is a very different macromolecule. The so-called coupling proteins could be the answer to both questions by performing a dual role in conjugation: coupling the two main components of the machinery (RCR and T4SS) and actively mediating DNA transport. We postulate that the T4SS is responsible for transport of the pilot protein (the relaxase) to the recipient. The DNA that is covalently linked to it is initially transported in a passive manner, trailing on the relaxase. We speculate that the pilus appendage could work as a needle, thrusting the substrate proteins to cross one or several membrane barriers into the recipient cytoplasm. This is the first step in conjugation. The second step is the active pumping of the DNA to the recipient, using the already available T4SS transport conduit. It is proposed that this second step is catalysed by the coupling proteins. Our 'shoot and pump' model solves the protein-DNA transport paradox of T4SS.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          VirB/D4-dependent protein translocation from Agrobacterium into plant cells.

          The Agrobacterium VirB/D4 transport system mediates the transfer of a nucleoprotein T complex into plant cells, leading to crown gall disease. In addition, several Virulence proteins must somehow be transported to fulfill a function in planta. Here, we used fusions between Cre recombinase and VirE2 or VirF to directly demonstrate protein translocation into plant cells. Transport of the proteins was monitored by a Cre-mediated in planta recombination event resulting in a selectable phenotype and depended on the VirB/D4 transport system but did not require transferred DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases.

            FtsK acts at the bacterial division septum to couple chromosome segregation with cell division. We demonstrate that a truncated FtsK derivative, FtsK(50C), uses ATP hydrolysis to translocate along duplex DNA as a multimer in vitro, consistent with FtsK having an in vivo role in pumping DNA through the closing division septum. FtsK(50C) also promotes a complete Xer recombination reaction between dif sites by switching the state of activity of the XerCD recombinases so that XerD makes the first pair of strand exchanges to form Holliday junctions that are then resolved by XerC. The reaction between directly repeated dif sites in circular DNA leads to the formation of uncatenated circles and is equivalent to the formation of chromosome monomers from dimers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase.

              The transfer of DNA across membranes and between cells is a central biological process; however, its molecular mechanism remains unknown. In prokaryotes, trans-membrane passage by bacterial conjugation, is the main route for horizontal gene transfer. It is the means for rapid acquisition of new genetic information, including antibiotic resistance by pathogens. Trans-kingdom gene transfer from bacteria to plants or fungi and even bacterial sporulation are special cases of conjugation. An integral membrane DNA-binding protein, called TrwB in the Escherichia coli R388 conjugative system, is essential for the conjugation process. This large multimeric protein is responsible for recruiting the relaxosome DNA-protein complex, and participates in the transfer of a single DNA strand during cell mating. Here we report the three-dimensional structure of a soluble variant of TrwB. The molecule consists of two domains: a nucleotide-binding domain of alpha/beta topology, reminiscent of RecA and DNA ring helicases, and an all-alpha domain. Six equivalent protein monomers associate to form an almost spherical quaternary structure that is strikingly similar to F1-ATPase. A central channel, 20 A in width, traverses the hexamer.
                Bookmark

                Author and article information

                Journal
                Molecular Microbiology
                Mol Microbiol
                Wiley
                0950-382X
                1365-2958
                July 2002
                July 2002
                : 45
                : 1
                : 1-8
                Article
                10.1046/j.1365-2958.2002.03014.x
                12100543
                1d7e3571-5931-42d4-9cc6-e6e239387a19
                © 2002

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article