22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Large voltage-induced magnetic anisotropy change in a few atomic layers of iron.

      Nature nanotechnology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the field of spintronics, researchers have manipulated magnetization using spin-polarized currents. Another option is to use a voltage-induced symmetry change in a ferromagnetic material to cause changes in magnetization or in magnetic anisotropy. However, a significant improvement in efficiency is needed before this approach can be used in memory devices with ultralow power consumption. Here, we show that a relatively small electric field (less than 100 mV nm(-1)) can cause a large change (approximately 40%) in the magnetic anisotropy of a bcc Fe(001)/MgO(001) junction. The effect is tentatively attributed to the change in the relative occupation of 3d orbitals of Fe atoms adjacent to the MgO barrier. Simulations confirm that voltage-controlled magnetization switching in magnetic tunnel junctions is possible using the anisotropy change demonstrated here, which could be of use in the development of low-power logic devices and non-volatile memory cells.

          Related collections

          Author and article information

          Journal
          19265844
          10.1038/nnano.2008.406

          Comments

          Comment on this article