5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroimmune System as a Driving Force for Plasticity Following CNS Injury

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Following an injury to the central nervous system (CNS), spontaneous plasticity is observed throughout the neuraxis and affects multiple key circuits. Much of this spontaneous plasticity can elicit beneficial and deleterious functional outcomes, depending on the context of plasticity and circuit affected. Injury-induced activation of the neuroimmune system has been proposed to be a major factor in driving this plasticity, as neuroimmune and inflammatory factors have been shown to influence cellular, synaptic, structural, and anatomical plasticity. Here, we will review the mechanisms through which the neuroimmune system mediates plasticity after CNS injury. Understanding the role of specific neuroimmune factors in driving adaptive and maladaptive plasticity may offer valuable therapeutic insight into how to promote adaptive plasticity and/or diminish maladaptive plasticity, respectively.

          Related collections

          Most cited references234

          • Record: found
          • Abstract: found
          • Article: not found

          Control of synaptic strength by glial TNFalpha.

          Activity-dependent modulation of synaptic efficacy in the brain contributes to neural circuit development and experience-dependent plasticity. Although glia are affected by activity and ensheathe synapses, their influence on synaptic strength has largely been ignored. Here, we show that a protein produced by glia, tumor necrosis factor alpha (TNFalpha), enhances synaptic efficacy by increasing surface expression of AMPA receptors. Preventing the actions of endogenous TNFalpha has the opposite effects. Thus, the continual presence of TNFalpha is required for preservation of synaptic strength at excitatory synapses. Through its effects on AMPA receptor trafficking, TNFalpha may play roles in synaptic plasticity and modulating responses to neural injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathological pain and the neuroimmune interface.

            Reciprocal signalling between immunocompetent cells in the central nervous system (CNS) has emerged as a key phenomenon underpinning pathological and chronic pain mechanisms. Neuronal excitability can be powerfully enhanced both by classical neurotransmitters derived from neurons, and by immune mediators released from CNS-resident microglia and astrocytes, and from infiltrating cells such as T cells. In this Review, we discuss the current understanding of the contribution of central immune mechanisms to pathological pain, and how the heterogeneous immune functions of different cells in the CNS could be harnessed to develop new therapeutics for pain control. Given the prevalence of chronic pain and the incomplete efficacy of current drugs--which focus on suppressing aberrant neuronal activity--new strategies to manipulate neuroimmune pain transmission hold considerable promise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits.

              Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                23 July 2020
                2020
                : 14
                : 187
                Affiliations
                Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, PA, United States
                Author notes

                Edited by: Junfang Wu, University of Maryland, Baltimore, United States

                Reviewed by: Jae K. Lee, University of Miami, United States; Hedong Li, Pennsylvania State University (PSU), United States

                *Correspondence: Veronica J. Tom veronica.tom@ 123456drexelmed.edu

                Specialty section: This article was submitted to Cellular Neuropathology, a section of the journal Frontiers in Cellular Neuroscience

                Article
                10.3389/fncel.2020.00187
                7390932
                32792908
                1dc09564-5fdf-43a0-b991-6f7d721f4511
                Copyright © 2020 O’Reilly and Tom.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 April 2020
                : 29 May 2020
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 321, Pages: 22, Words: 21506
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R01 NS085426, R01 NS1069080, R01 NS111761
                Categories
                Cellular Neuroscience
                Review

                Neurosciences
                neuroinflammation,plasticity,neurotrauma,injury,stroke,cytokines,growth factors,sprouting
                Neurosciences
                neuroinflammation, plasticity, neurotrauma, injury, stroke, cytokines, growth factors, sprouting

                Comments

                Comment on this article