9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To better understand how the apoptosis repressor with caspase recruitment domain (ARC) protein confers drug resistance in acute myeloid leukemia (AML), we investigated the role of ARC in regulating leukemia-mesenchymal stromal cell (MSC) interactions. In addition to the previously reported effect on AML apoptosis, we have demonstrated that ARC enhances migration and adhesion of leukemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. Mechanistic studies revealed that ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Expression of these chemokines in MSCs increased by AML cells in an ARC/IL1β-dependent manner; likewise, IL1β expression was elevated when leukemia cells were co-cultured with MSCs. Further, cells from AML patients expressed the receptors for and migrated toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppressed AML cell migration and sensitized the cells co-cultured with MSCs to chemotherapy. Our results suggest the existence of a complex ARC-regulated circuit that maintains intimate connection of AML with the tumor microenvironment through NFκB/IL1β-regulated chemokine receptor/ligand axes and reciprocal crosstalk resulting in cytoprotection. The data implicate ARC as a promising drug target to potentially sensitize AML cells to chemotherapy.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Stem cells and niches: mechanisms that promote stem cell maintenance throughout life.

          Niches are local tissue microenvironments that maintain and regulate stem cells. Long-predicted from mammalian studies, these structures have recently been characterized within several invertebrate tissues using methods that reliably identify individual stem cells and their functional requirements. Although similar single-cell resolution has usually not been achieved in mammalian tissues, principles likely to govern the behavior of niches in diverse organisms are emerging. Considerable progress has been made in elucidating how the microenvironment promotes stem cell maintenance. Mechanisms of stem cell maintenance are key to the regulation of homeostasis and likely contribute to aging and tumorigenesis when altered during adulthood.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors.

            Molecules that physiologically control cell proliferation are often produced locally in tissues and are rapidly destroyed when they enter circulation. This allows local effects while avoiding interference with other systems. Unfortunately, it also limits the therapeutic use of these molecules via systemic delivery. We here demonstrate that, for the purpose of anticancer therapy, bone marrow-derived mesenchymal stem cells (MSCs) can produce biological agents locally at tumor sites. We show that the tumor microenvironment preferentially promotes the engraftment of MSCs as compared with other tissues. MSCs with forced expression of IFN-beta inhibited the growth of malignant cells in vivo. Importantly, this effect required the integration of MSCs into the tumors and could not be achieved by systemically delivered IFN-beta or by IFN-beta produced by MSCs at a site distant from the tumors. Our results indicate that MSCs may serve as a platform for delivery of biological agents in tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML.

              SDF-1alpha/CXCR4 signaling plays a key role in leukemia/bone marrow microenvironment interactions. We previously reported that bone marrow-derived stromal cells inhibit chemotherapy-induced apoptosis in acute myeloid leukemia (AML). Here we demonstrate that the CXCR4 inhibitor AMD3465 antagonized stromal-derived factor 1alpha (SDF-1alpha)-induced and stroma-induced chemotaxis and inhibited SDF-1alpha-induced activation of prosurvival signaling pathways in leukemic cells. Further, CXCR4 inhibition partially abrogated the protective effects of stromal cells on chemotherapy-induced apoptosis in AML cells. Fetal liver tyrosine kinase-3 (FLT3) gene mutations activate CXCR4 signaling, and coculture with stromal cells significantly diminished antileukemia effects of FLT3 inhibitors in cells with mutated FLT3. Notably, CXCR4 inhibition increased the sensitivity of FLT3-mutated leukemic cells to the apoptogenic effects of the FLT3 inhibitor sorafenib. In vivo studies demonstrated that AMD3465, alone or in combination with granulocyte colony-stimulating factor, induced mobilization of AML cells and progenitor cells into circulation and enhanced antileukemic effects of chemotherapy and sorafenib, resulting in markedly reduced leukemia burden and prolonged survival of the animals. These findings indicate that SDF-1alpha/CXCR4 interactions contribute to the resistance of leukemic cells to signal transduction inhibitor- and chemotherapy-induced apoptosis in systems mimicking the physiologic microenvironment. Disruption of these interactions with CXCR4 inhibitors represents a novel strategy of sensitizing leukemic cells by targeting their protective bone marrow microenvironment.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                12 April 2016
                4 March 2016
                : 7
                : 15
                : 20054-20067
                Affiliations
                1 Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
                2 King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
                3 Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
                Author notes
                Correspondence to: Bing Z. Carter, bicarter@ 123456mdanderson.org
                Article
                7911
                10.18632/oncotarget.7911
                4991438
                26956049
                1dcb7cef-b79d-4fd1-ac46-00dd7e9a860c
                Copyright: © 2016 Carter et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 January 2016
                : 15 February 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                aml,arc,nfκb,chemoresistance
                Oncology & Radiotherapy
                aml, arc, nfκb, chemoresistance

                Comments

                Comment on this article