3
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coronavirus: good or bad news for ocular diseases?

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the editor: In urban area of industrial countries, the ocular surface is exposed daily to intense burden of particulate matter, ozone, carbon monoxide, nitrogen dioxide (NO2) and sulfur dioxide produced by fossil fuel. Air pollution is a causative factor for various ocular surface complaints such as eye redness, irritation and blurring of vision, as well as various ocular diseases such as meibomian gland disease and dry eye disease, vernal keratoconjunctivitis, allergic conjunctivitis, retinal vein and artery occlusion, and glaucoma.1–4 Putative pathophysiology of air pollutants is mediated by oxidative stress in ocular tissues exposed to atmospheric changes involving damage of cellular DNA, membrane lipids peroxidation, inactivation of receptor protein and enzymes, and finally cells apoptosis and autophagy mediated by autophagosome.3 5 Similarly, air pollutants promote neurotoxic and microvascular effects impacting on cardiovascular diseases as well as glaucoma and retinal vascular diseases.2 6 7 Since 8 December 2019, the world has been confronted by a viral pneumonia pandemic caused by the coronavirus named Severe Acute Respiratory Syndrome (SARS-CoV-2) or Coronavirus Disease 2019 (COVID-19). Initially described in Wuhan, Hubei, in the Peoples Republic of China, the movement of people and freight through tourism and commercial airline flights contributed to the spread of the global pandemic, causing millions of cases and tens of thousands of deaths. The local authorities responded quickly to promulgate quarantine status of epicentres such as towns, popular districts, production plants and other gathering places. Consequently, the reduction of human activities has impacted on greenhouse gas emissions from industry, tertiary services, mass transits or individual car circulation. NASA’s Aura satellite described a marked reduction of nitrous oxide (NO2) across China from 1–20 January 2020 (before the quarantine) to 10–25 February (during the quarantine).8 9 According to NASA scientists, the reduction in NO2 pollution was first apparent near Wuhan, but eventually spread across the country and around the world. A similar NO2 decrease across Europe, China and India were identified by Copernicus Sentinel-5P satellite, from the European Union Copernicus programme, during quarantine.10 11 Globally, an NO2 decrease of 40%–50% over major cities across Asia, Europe or North America were measured following the decrease of global economy due to coronavirus epidemic (figure 1).8 10 11 The impact of the global reduction of air pollution during SARS-CoV-2 pandemic could positively affect all the biodiversity of Earth, involving the slowdown of climatic change and the quality of freshwater. Therefore, the strong efforts of the international community to contain the COVID-19 epidemic may also have indirect health benefits by lowering the impact of air pollution on ocular diseases. Even if SARS-CoV-2 involves conjunctivitis and external ocular infections,12 there are not yet published data describing the effects of a reduction of air pollutants on the ocular surface during the quarantine period, and a putative decrease in some ocular complaints—individuals being at home and less exposed to pollens and atmospheric pollutants. However, all activities soliciting the near vision and accommodation were particularly increased during quarantine such as videogames, television, tele-working, reading and others activities in smartphone, putatively generating dry eye symptoms and visual fatigue.13 Also, it should be noted that a large number of doctors accidentally acquired coronavirus infection by contact with oropharyngeal fluids, but also tears and conjunctival secretions of patients14—particularly for patients with conjunctivitis.15 Furthermore, recent data highlighted that ocular symptoms could occur about 10–15 days after systemic contamination, with a low positivity rate of reverse transcription-PCR in tears and conjunctival samples (ie, conjunctival swab or/and scrapping).16 17 SARS-CoV-2 patients without any ocular symptoms could also excreted SARS-CoV-2 in tears.18 Even if SARS-CoV-2 is an enveloped virus surviving a few hours or days on dry inert surfaces, the contaminated surfaces of ophthalmological consultation rooms are an established route of SARS-CoV-2 spreading.19 Thus, ophthalmologists are mainly concerned by an aerosol transmission, working in confined spaces at few centimetres from the faces of their patients, and a transmission by contact with tears or contaminated surfaces. Considering the contagiousness of the SARS-CoV-2, personal protective equipment is necessary in daily clinical practice: gloves and filtering face piece respirators (FFP2 or FFP3 masks) for the ophthalmologist and surgical facemasks for the patient.20 A plexiglass barrier (protective shield) between patient and ophthalmologist is as additional salient approach during close clinical and paraclinical examinations.21 Those preventive measures against SARS-CoV-2 will increase the duration of consultation, which will increase the waiting list for patients—that is already long and that may further delay medical treatment.22 In conclusion, even if individuals are less exposed to air pollutants and environmental allergens during quarantine weeks, SARS-CoV-2 seems to be a foe both for ophthalmologists—with a risk of infection through contact with eye secretions of patients—and for patients—with a delay in their medical management. The SARS-CoV-2 will probably upset ophthalmological practices during the forthcoming months or years. Figure 1 The decrease of global air pollution following the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic (satellite images from NASA and European Space Agency).8–11

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found

          Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS‐CoV‐2 infection

          Abstract Objective This study aimed to assess the presence of novel coronavirus in tears and conjunctival secretions of SARS–CoV‐2‐infected patients. Methods A prospective interventional case series study was performed, and 30 confirmed novel coronavirus pneumonia (NCP) patients were selected at the First Affiliated Hospital of Zhejiang University from 26 January 2020 to 9 February 2020. At an interval of 2 to 3 days, tear and conjunctival secretions were collected twice with disposable sampling swabs for reverse‐transcription polymerase chain reaction (RT‐PCR) assay. Results Twenty‐one common‐type and nine severe‐type NCP patients were enrolled. Two samples of tear and conjunctival secretions were obtained from the only one patient with conjunctivitis yielded positive RT‐PCR results. Fifty‐eight samples from other patents were all negative. Conclusion We speculate that SARS‐CoV‐2 may be detected in the tears and conjunctival secretions in NCP patients with conjunctivitis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2019-nCoV transmission through the ocular surface must not be ignored

            Chaolin Huang and colleagues 1 reported the epidemiology, symptoms, and treatment of patients infected by the 2019 novel coronavirus (2019-nCoV) in Wuhan, China. As ophthalmologists, we believe that transmission of 2019-nCoV through the eyes was ignored. On Jan 22, Guangfa Wang, a member of the national expert panel on pneumonia, reported that he was infected by 2019-nCoV during the inspection in Wuhan. 2 He wore an N95 mask but did not wear anything to protect his eyes. Several days before the onset of pneumonia, Wang complained of redness of the eyes. Unprotected exposure of the eyes to 2019-nCoV in the Wuhan Fever Clinic might have allowed the virus to infect the body. 2 Infectious droplets and body fluids can easily contaminate the human conjunctival epithelium. 3 Respiratory viruses are capable of inducing ocular complications in infected patients, which then leads to respiratory infection. 4 Severe acute respiratory syndrome coronavirus (SARS-CoV) is predominantly transmitted through direct or indirect contact with mucous membranes in the eyes, mouth, or nose. 5 The fact that exposed mucous membranes and unprotected eyes increased the risk of SARS-CoV transmission 4 suggests that exposure of unprotected eyes to 2019-nCoV could cause acute respiratory infection. Thus, Huang and colleagues 1 should have analysed conjunctival scrapings from both confirmed and suspected 2019-nCoV cases during the onset of symptoms. The respiratory tract is probably not the only transmission route for 2019-nCoV, and all ophthalmologists examining suspected cases should wear protective eyewear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ocular manifestations of a hospitalised patient with confirmed 2019 novel coronavirus disease

              Purpose To report the ocular characteristics and the presence of viral RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in conjunctival swab specimens in a patient with confirmed 2019 novel coronavirus disease (COVID-19). Participant and methods A 30-year-old man with confirmed COVID-19 and bilateral acute conjunctivitis which occurred 13 days after illness onset. Based on detailed ophthalmic examination, reverse transcription PCR (RT-PCR) was performed to detect SARS-CoV-2 virus in conjunctival swabs. The ocular characteristics, presence of viral RNA and viral dynamics of SARS-CoV-2 in the conjunctival specimens were evaluated. Results Slit lamp examination showed bilateral acute follicular conjunctivitis. RT-PCR assay demonstrated the presence of viral RNA in conjunctival specimen 13 days after onset (cycle threshold value: 31). The conjunctival swab specimens remained positive for SARS-CoV-2 on 14 and 17 days after onset. On day 19, RT-PCR result was negative for SARS-CoV-2. Conclusion SARS-CoV-2 is capable of causing ocular complications such as viral conjunctivitis in the middle phase of illness. Precautionary measures are recommended when examining infected patients throughout the clinical course of the infection. However, conjunctival sampling might not be useful for early diagnosis because the virus may not appear initially in the conjunctiva.
                Bookmark

                Author and article information

                Journal
                BMJ Open Ophthalmol
                BMJ Open Ophthalmol
                bmjophth
                bmjophth
                BMJ Open Ophthalmology
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2397-3269
                2020
                9 June 2020
                : 5
                : 1
                : e000495
                Affiliations
                [1 ] departmentOphthalmology , University Hospital of Clermont-Ferrand , Clermont-Ferrand, Auvergne Rhône Alpes, France
                [2 ] departmentPreventive and Occupational Medicine , University Hospital of Clermont-Ferrand , Clermont-Ferrand, Auvergne-Rhône-Alpes, France
                Author notes
                [Correspondence to ] Dr Valentin Navel; valentin.navel@ 123456hotmail.fr
                Author information
                http://orcid.org/0000-0001-6317-345X
                Article
                bmjophth-2020-000495
                10.1136/bmjophth-2020-000495
                7306266
                1dd72bcb-34e2-41ae-8216-a18cdbac1639
                © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.

                History
                Categories
                Editorial
                1506
                2474
                Custom metadata
                unlocked

                cornea,epidemiology,infection,microbiology,ocular surface
                cornea, epidemiology, infection, microbiology, ocular surface

                Comments

                Comment on this article