8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Successful Case for Deselection of Albino Embryo and Live Birth of Albinism-Free Healthy Baby Followed by PGT-M

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, Preimplantation genetic testing for monogenic disorders (PGT-M) has gained a lot of focus in the field of assisted reproduction technology, various studies have been published in support of it and many are opposing its role. It has been criticized due to many ethical as well as scientific reasons, but there is no doubt that PGT-M has been one of the most important breakthroughs in in vitro fertilization. A critical aspect of this technology is the possibility that the biopsy itself can adversely affect the quality of embryo and compulsion of embryo freezing. Oculocutaneous albinism (OCA) is a condition which is related to skin, hair, eye color (pigments), where affected individuals typically have very fair skin and white- or light-colored hair. These patients are prone to skin cancers on prolonged sun exposure. It also reduces the pigmentation of the colored part of the eyes (the iris) and the light-sensitive tissue at the back of the eye (the retina). People with this condition usually have problem in vision such as reduced sharpness, involuntary eye movements, and photophobia. Here, we report the successful use of PGT-M and a novel protocol for the preimplantation genetic diagnosis of OCA following trophectoderm cell biopsy from blastocysts and the birth of a healthy infant to a couple having previously affected child.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Oculocutaneous albinism

          Oculocutaneous albinism (OCA) is a group of inherited disorders of melanin biosynthesis characterized by a generalized reduction in pigmentation of hair, skin and eyes. The prevalence of all forms of albinism varies considerably worldwide and has been estimated at approximately 1/17,000, suggesting that about 1 in 70 people carry a gene for OCA. The clinical spectrum of OCA ranges, with OCA1A being the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3 and OCA4 show some pigment accumulation over time. Clinical manifestations include various degrees of congenital nystagmus, iris hypopigmentation and translucency, reduced pigmentation of the retinal pigment epithelium, foveal hypoplasia, reduced visual acuity usually (20/60 to 20/400) and refractive errors, color vision impairment and prominent photophobia. Misrouting of the optic nerves is a characteristic finding, resulting in strabismus and reduced stereoscopic vision. The degree of skin and hair hypopigmentation varies with the type of OCA. The incidence of skin cancer may be increased. All four types of OCA are inherited as autosomal recessive disorders. At least four genes are responsible for the different types of the disease (TYR, OCA2, TYRP1 and MATP). Diagnosis is based on clinical findings of hypopigmentation of the skin and hair, in addition to the characteristic ocular symptoms. Due to the clinical overlap between the OCA forms, molecular diagnosis is necessary to establish the gene defect and OCA subtype. Molecular genetic testing of TYR and OCA2 is available on a clinical basis, while, at present, analysis of TYRP1 and MATP is on research basis only. Differential diagnosis includes ocular albinism, Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, Griscelli syndrome, and Waardenburg syndrome type II. Carrier detection and prenatal diagnosis are possible when the disease causing mutations have been identified in the family. Glasses (possibly bifocals) and dark glasses or photocromic lenses may offer sufficient help for reduced visual activity and photophobia. Correction of strabismus and nystagmus is necessary and sunscreens are recommended. Regular skin checks for early detection of skin cancer should be offered. Persons with OCA have normal lifespan, development, intelligence and fertility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mutational Analysis of Oculocutaneous Albinism: A Compact Review

            Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human oculocutaneous albinism caused by single base insertion in the tyrosinase gene.

              Tyrosinase-negative oculocutaneous albinism (OCA) is an inborn error of metabolism, characterized by a complete lack of melanin pigments in the eyes and skin. We have isolated and characterized the tyrosinase gene of one affected child (S.S.) with tyrosinase-negative OCA. Sequence analysis reveals a single-base insertion in the exon 2 that shifts the reading frame and introduces a premature termination signal (TGA codon) after the amino acid residue 298. Functional analysis of the mutated gene indicates that such a truncated tyrosinase lacking one potential copper-binding region is catalytically inactive. We therefore conclude that the albino phenotype of the patient S.S. is a consequence of the inactive tyrosinase caused by the nonsense mutation in the tyrosinase gene.
                Bookmark

                Author and article information

                Journal
                J Hum Reprod Sci
                J Hum Reprod Sci
                JHRS
                Journal of Human Reproductive Sciences
                Wolters Kluwer - Medknow (India )
                0974-1208
                1998-4766
                Jul-Sep 2020
                27 October 2020
                : 13
                : 3
                : 245-248
                Affiliations
                [1]Department of IVF, Akanksha Hospital and Research Institute, Anand, India
                [1 ]Department of Genetic, S N Gene Lab, Surat, Gujarat, India
                Author notes
                Address for correspondence: Dr. Harsha K. Bhadarka, Department of IVF, Akanksha Hospital and Research Institute, Anand, Gujarat, India. E-mail: harshabhadarka@ 123456yahoo.co.in
                Article
                JHRS-13-245
                10.4103/jhrs.JHRS_38_19
                7727887
                33311913
                1dffe4c8-26fd-409e-a7cc-37a22c4ab378
                Copyright: © 2020 Journal of Human Reproductive Sciences

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 27 May 2019
                : 01 November 2019
                : 20 April 2020
                Categories
                Case Report

                Human biology
                albinism,intracytoplasmic sperm injection,pgt-m,preimplantation genetic diagnosis,mutation

                Comments

                Comment on this article