8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adopting Bacteria in Order to Adapt to Water—How Reed Beetles Colonized the Wetlands (Coleoptera, Chrysomelidae, Donaciinae)

      research-article
      , *
      Insects
      MDPI
      Donaciinae, symbiosis, gamma-proteobacteria, co-speciation, tetracycline, pupation rate, cocoon formation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present paper reviews the biology of reed beetles (Donaciinae), presents experimental data on the role of specific symbiotic bacteria, and describes a molecular method for the detection of those bacteria. Reed beetles are herbivores living on wetland plants, each species being mono- or oligo-phagous. They lay their eggs on the host plant and the larvae live underwater in the sediment attached to its roots. The larvae pupate there in a water-tight cocoon, which they build using a secretion that is produced by symbiotic bacteria. The bacteria are located in four blind sacs at the foregut of the larvae; in (female) adults they colonize two out of the six Malpighian tubules. Tetracycline treatment of larvae reduced their pupation rate, although the bacteria could not be fully eliminated. When the small amount of bacterial mass attached to eggs was experimentally removed before hatching, symbiont free larvae resulted, showing the external transmission of the bacteria to the offspring. Specific primers were designed to detect the bacteria, and to confirm their absence in manipulated larvae. The pupation underwater enabled the reed beetles to permanently colonize the wetlands and to diversify in this habitat underexploited by herbivorous insects (adaptive radiation).

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms.

          Traditional and molecular typing schemes for the characterization of pathogenic microorganisms are poorly portable because they index variation that is difficult to compare among laboratories. To overcome these problems, we propose multilocus sequence typing (MLST), which exploits the unambiguous nature and electronic portability of nucleotide sequence data for the characterization of microorganisms. To evaluate MLST, we determined the sequences of approximately 470-bp fragments from 11 housekeeping genes in a reference set of 107 isolates of Neisseria meningitidis from invasive disease and healthy carriers. For each locus, alleles were assigned arbitrary numbers and dendrograms were constructed from the pairwise differences in multilocus allelic profiles by cluster analysis. The strain associations obtained were consistent with clonal groupings previously determined by multilocus enzyme electrophoresis. A subset of six gene fragments was chosen that retained the resolution and congruence achieved by using all 11 loci. Most isolates from hyper-virulent lineages of serogroups A, B, and C meningococci were identical for all loci or differed from the majority type at only a single locus. MLST using six loci therefore reliably identified the major meningococcal lineages associated with invasive disease. MLST can be applied to almost all bacterial species and other haploid organisms, including those that are difficult to cultivate. The overwhelming advantage of MLST over other molecular typing methods is that sequence data are truly portable between laboratories, permitting one expanding global database per species to be placed on a World-Wide Web site, thus enabling exchange of molecular typing data for global epidemiology via the Internet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera.

            A Douglas (1998)
            Most aphids possess intracellular bacteria of the genus Buchnera. The bacteria are transmitted vertically via the aphid ovary, and the association is obligate for both partners: Bacteria-free aphids grow poorly and produce few or no offspring, and Buchnera are both unknown apart from aphids and apparently unculturable. The symbiosis has a nutritional basis. Specifically, bacterial provisioning of essential amino acids has been demonstrated. Nitrogen recycling, however, is not quantitatively important to the nutrition of aphid species studied, and there is strong evidence against bacterial involvement in the lipid and sterol nutrition of aphids. Buchnera have been implicated in various non-nutritional functions. Of these, just one has strong experimental support: promotion of aphid transmission of circulative viruses. It is argued that strong parallels may exist between the nutritional interactions (including the underlying mechanisms) in the aphid-Buchnera association and other insect symbioses with intracellular microorganisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Absolute diversification rates in angiosperm clades.

              The extraordinary contemporary species richness and ecological predominance of flowering plants (angiosperms) are even more remarkable when considering the relatively recent onset of their evolutionary diversification. We examine the evolutionary diversification of angiosperms and the observed differential distribution of species in angiosperm clades by estimating the rate of diversification for angiosperms as a whole and for a large set of angiosperm clades. We also identify angiosperm clades with a standing diversity that is either much higher or lower than expected, given the estimated background diversification rate. Recognition of angiosperm clades, the phylogenetic relationships among them, and their taxonomic composition are based on an empirical compilation of primary phylogenetic studies. By making an integrative and critical use of the paleobotanical record, we obtain reasonably secure approximations for the age of a large set of angiosperm clades. Diversification was modeled as a stochastic, time-homogeneous birth-and-death process that depends on the diversification rate (r) and the relative extinction rate (epsilon). A statistical analysis of the birth and death process was then used to obtain 95% confidence intervals for the expected number of species through time in a clade that diversifies at a rate equal to that of angiosperms as a whole. Confidence intervals were obtained for stem group and for crown group ages in the absence of extinction (e = 0.0) and under a high relative extinction rate (epsilon = 0.9). The standing diversity of angiosperm clades was then compared to expected species diversity according to the background rate of diversification, and, depending on their placement with respect to the calculated confidence intervals, exceedingly species-rich or exceedingly species-poor clades were identified. The rate of diversification for angiosperms as a whole ranges from 0.077 (epsilon = 0.9) to 0.089 (epsilon = 0.0) net speciation events per million years. Ten clades fall above the confidence intervals of expected species diversity, and 13 clades were found to be unexpectedly species poor. The phylogenetic distribution of clades with an exceedingly high number of species suggests that traits that confer high rates of diversification evolved independently in different instances and do not characterize the angiosperms as a whole.
                Bookmark

                Author and article information

                Journal
                Insects
                Insects
                Insects
                Insects
                MDPI
                2075-4450
                December 2011
                09 December 2011
                : 2
                : 4
                : 540-554
                Affiliations
                Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany; E-Mail: birgit.kleinschmidt@ 123456gmx.net
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: gregor.koelsch@ 123456uni-hamburg.de ; Tel.: +49-40-4-2838-3933; Fax: +49-40-4-2838-3933.
                Article
                insects-02-00540
                10.3390/insects2040540
                4553447
                26467833
                1e0c4c6b-4bed-4d95-a435-eadb984cb516
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 28 October 2011
                : 16 November 2011
                : 25 November 2011
                Categories
                Article

                donaciinae,symbiosis,gamma-proteobacteria,co-speciation,tetracycline,pupation rate,cocoon formation

                Comments

                Comment on this article