10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Morphometric analysis of lumbar vertebrae in extinct Malagasy strepsirrhines.

      American Journal of Physical Anthropology
      Animals, Fossils, Haplorhini, anatomy & histology, Lumbar Vertebrae, Madagascar, Principal Component Analysis, Strepsirhini

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous research on subfossil lemurs has revealed much about the positional behavior of these extinct strepsirrhines, but a thorough quantitative analysis of their vertebral form and function has not been performed. In this study, 156 lumbar vertebrae of Pachylemur, Archaeolemur, Megaladapis, Mesopropithecus, Babakotia, and Palaeopropithecus (11 species in all) were compared to those of 26 species of extant strepsirrhines and haplorhines. Lumbar shape was compared among species, using a principal components analysis (PCA) in conjunction with selected vertebral indices. The first principal component revealed strong separation between Palaeopropithecus at one extreme, and Archaeolemur/Pachylemur at the other, with Babakotia, Mesopropithecus, and Megaladapis in an intermediate position. Palaeopropithecus has markedly shorter spinous processes and wider laminae than do the other subfossil taxa, consistent with sloth-like, inverted suspensory postures. The moderately reduced lumbar spinous processes of Babakotia, Mesopropithecus, and Megaladapis are convergent with those of lorisids and Pongo, reflecting antipronogrady, but a less specialized adaptation than that of Palaeopropithecus. Archaeolemur and Pachylemur share relatively elongated spinous processes, in conjunction with other features (e.g., transverse process orientation and relatively short vertebral bodies) indicative of pronograde, quadrupedal locomotion characterized by reduced agility. All subfossil taxa exhibit adaptations emphasizing lumbar spinal stability (e.g., relatively short vertebral bodies, and transverse processes that are not oriented ventrally); we believe this probably reflects convergent mechanical demands connected to large body size, irrespective of specific locomotor mode. Reconstructions of positional behavior in subfossil lemurs based on lumbar vertebrae are largely consistent with those based on other aspects of the postcrania. 2005 Wiley-Liss, Inc.

          Related collections

          Author and article information

          Journal
          16110476
          10.1002/ajpa.20122

          Chemistry
          Animals,Fossils,Haplorhini,anatomy & histology,Lumbar Vertebrae,Madagascar,Principal Component Analysis,Strepsirhini

          Comments

          Comment on this article