74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post-ischemic inflammation regulates neural damage and protection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-ischemic inflammation is important in ischemic stroke pathology. However, details of the inflammation process, its resolution after stroke and its effect on pathology and neural damage have not been clarified. Brain swelling, which is often fatal in ischemic stroke patients, occurs at an early stage of stroke due to endothelial cell injury and severe inflammation by infiltrated mononuclear cells including macrophages, neutrophils, and lymphocytes. At early stage of inflammation, macrophages are activated by molecules released from necrotic cells [danger-associated molecular patterns (DAMPs)], and inflammatory cytokines and mediators that increase ischemic brain damage by disruption of the blood–brain barrier are released. After post-ischemic inflammation, macrophages function as scavengers of necrotic cell and brain tissue debris. Such macrophages are also involved in tissue repair and neural cell regeneration by producing tropic factors. The mechanisms of inflammation resolution and conversion of inflammation to neuroprotection are largely unknown. In this review, we summarize information accumulated recently about DAMP-induced inflammation and the neuroprotective effects of inflammatory cells, and discuss next generation strategies to treat ischemic stroke.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury.

          Lymphocyte recruitment and activation have been implicated in the progression of cerebral ischemia-reperfusion (I/R) injury, but the roles of specific lymphocyte subpopulations and cytokines during stroke remain to be clarified. Here we demonstrate that the infiltration of T cells into the brain, as well as the cytokines interleukin-23 (IL-23) and IL-17, have pivotal roles in the evolution of brain infarction and accompanying neurological deficits. Blockade of T cell infiltration into the brain by the immunosuppressant FTY720 reduced I/R-induced brain damage. The expression of IL-23, which was derived mostly from infiltrated macrophages, increased on day 1 after I/R, whereas IL-17 levels were elevated after day 3, and this induction of IL-17 was dependent on IL-23. These data, together with analysis of mice genetically disrupted for IL-17 and IL-23, suggest that IL-23 functions in the immediate stage of I/R brain injury, whereas IL-17 has an important role in the delayed phase of I/R injury during which apoptotic neuronal death occurs in the penumbra. Intracellular cytokine staining revealed that gammadeltaT lymphocytes, but not CD4(+) helper T cells, were a major source of IL-17. Moreover, depletion of gammadeltaT lymphocytes ameliorated the I/R injury. We propose that T lymphocytes, including gammadeltaT lymphocytes, could be a therapeutic target for mitigating the inflammatory events that amplify the initial damage in cerebral ischemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathobiology of ischaemic stroke: an integrated view.

            Brain injury following transient or permanent focal cerebral ischaemia (stroke) develops from a complex series of pathophysiological events that evolve in time and space. In this article, the relevance of excitotoxicity, peri-infarct depolarizations, inflammation and apoptosis to delayed mechanisms of damage within the peri-infarct zone or ischaemic penumbra are discussed. While focusing on potentially new avenues of treatment, the issue of why many clinical stroke trials have so far proved disappointing is addressed. This article provides a framework that can be used to generate testable hypotheses and treatment strategies that are linked to the appearance of specific pathophysiological events within the ischaemic brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model.

              Loss of neurons after brain injury and in neurodegenerative disease is often accompanied by reactive gliosis and scarring, which are difficult to reverse with existing treatment approaches. Here, we show that reactive glial cells in the cortex of stab-injured or Alzheimer's disease (AD) model mice can be directly reprogrammed into functional neurons in vivo using retroviral expression of a single neural transcription factor, NeuroD1. Following expression of NeuroD1, astrocytes were reprogrammed into glutamatergic neurons, while NG2 cells were reprogrammed into glutamatergic and GABAergic neurons. Cortical slice recordings revealed both spontaneous and evoked synaptic responses in NeuroD1-converted neurons, suggesting that they integrated into local neural circuits. NeuroD1 expression was also able to reprogram cultured human cortical astrocytes into functional neurons. Our studies therefore suggest that direct reprogramming of reactive glial cells into functional neurons in vivo could provide an alternative approach for repair of injured or diseased brain. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                14 October 2014
                2014
                : 8
                : 319
                Affiliations
                [1] 1Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
                [2] 2Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Tokyo, Japan
                Author notes

                Edited by: Arthur Liesz, University Hospital Munich, Germany

                Reviewed by: Mathias Gelderblom, University Medical Center Hamburg-Eppendorf, Germany; Alexander Dressel, University Medicine Greifswald, Germany

                *Correspondence: Akihiko Yoshimura, Department of Microbiology and Immunology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan e-mail: yoshimura@ 123456a6.keio.jp

                This article was submitted to the journal Frontiers in Cellular Neuroscience.

                Article
                10.3389/fncel.2014.00319
                4196547
                25352781
                1e17e4ab-b687-49e3-92b1-751c230883c3
                Copyright © 2014 Shichita, Ito and Yoshimura.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 July 2014
                : 23 September 2014
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 103, Pages: 8, Words: 0
                Categories
                Neuroscience
                Review Article

                Neurosciences
                damage-associated molecular patterns (damps),inflammation,cytokines,inflammasome,resolution of inflammation

                Comments

                Comment on this article