9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d1927846e496">Exposure to fine particulate matter is a leading cause of premature deaths and illnesses globally. In the eastern United States, substantial cuts in sulfur dioxide and nitrogen oxides emissions have considerably lowered particulate sulfate and nitrate concentrations for all seasons except winter. Simulations that reproduce detailed airborne observations of wintertime atmospheric chemistry over the eastern United States indicate that particulate sulfate and nitrate formation is limited by the availability of oxidants and by the acidity of fine particles, respectively. These limitations relax at lower ambient concentrations, forming particulate matter more efficiently, and weaken the effect of emission reductions. These results imply that larger emission reductions, especially during winter, are necessary for substantial improvements in wintertime air quality in the eastern United States. </p><p class="first" id="d1927846e499">Sulfate ( <span class="inline-formula"> <math id="i1" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mo>-</mo> </mrow> </msubsup> </math> </span>) and nitrate ( <span class="inline-formula"> <math id="i2" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>3</mn> </mrow> <mrow> <mo>-</mo> </mrow> </msubsup> </math> </span>) account for half of the fine particulate matter mass over the eastern United States. Their wintertime concentrations have changed little in the past decade despite considerable precursor emissions reductions. The reasons for this have remained unclear because detailed observations to constrain the wintertime gas–particle chemical system have been lacking. We use extensive airborne observations over the eastern United States from the 2015 Wintertime Investigation of Transport, Emissions, and Reactivity (WINTER) campaign; ground-based observations; and the GEOS-Chem chemical transport model to determine the controls on winter <span class="inline-formula"> <math id="i3" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mo>-</mo> </mrow> </msubsup> </math> </span> and <span class="inline-formula"> <math id="i4" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>3</mn> </mrow> <mrow> <mo>-</mo> </mrow> </msubsup> </math> </span>. GEOS-Chem reproduces observed <span class="inline-formula"> <math id="i5" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mo>-</mo> </mrow> </msubsup> </math> </span>– <span class="inline-formula"> <math id="i6" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>3</mn> </mrow> <mrow> <mo>-</mo> </mrow> </msubsup> </math> </span>– <span class="inline-formula"> <math id="i7" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">H</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mo>+</mo> </mrow> </msubsup> </math> </span> particulate concentrations (2.45 μg <span class="inline-formula"> <math id="i8" overflow="scroll"> <msup> <mrow> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> </math> </span>) and composition ( <span class="inline-formula"> <math id="i9" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mo>-</mo> </mrow> </msubsup> </math> </span>: 47%; <span class="inline-formula"> <math id="i10" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>3</mn> </mrow> <mrow> <mo>-</mo> </mrow> </msubsup> </math> </span>: 32%; <span class="inline-formula"> <math id="i11" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">H</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mo>+</mo> </mrow> </msubsup> </math> </span>: 21%) during WINTER. Only 18% of <span class="inline-formula"> <math id="i12" overflow="scroll"> <msub> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </math> </span> emissions were regionally oxidized to <span class="inline-formula"> <math id="i13" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mo>-</mo> </mrow> </msubsup> </math> </span> during WINTER, limited by low [H <sub>2</sub>O <sub>2</sub>] and [OH]. Relatively acidic fine particulates (pH <span class="inline-formula"> <math id="i14" overflow="scroll"> <mo>∼</mo> </math> </span>1.3) allow 45% of nitrate to partition to the particle phase. Using GEOS-Chem, we examine the impact of the 58% decrease in winter <span class="inline-formula"> <math id="i15" overflow="scroll"> <msub> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </math> </span> emissions from 2007 to 2015 and find that the H <sub>2</sub>O <sub>2</sub> limitation on <span class="inline-formula"> <math id="i16" overflow="scroll"> <msub> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </math> </span> oxidation weakened, which increased the fraction of <span class="inline-formula"> <math id="i17" overflow="scroll"> <msub> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </math> </span> emissions oxidizing to <span class="inline-formula"> <math id="i18" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mo>-</mo> </mrow> </msubsup> </math> </span>. Simultaneously, NOx emissions decreased by 35%, but the modeled <span class="inline-formula"> <math id="i19" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>3</mn> </mrow> <mrow> <mo>-</mo> </mrow> </msubsup> </math> </span> particle fraction increased as fine particle acidity decreased. These feedbacks resulted in a 40% decrease of modeled [ <span class="inline-formula"> <math id="i20" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mo>-</mo> </mrow> </msubsup> </math> </span>] and no change in [ <span class="inline-formula"> <math id="i21" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>3</mn> </mrow> <mrow> <mo>-</mo> </mrow> </msubsup> </math> </span>], as observed. Wintertime [ <span class="inline-formula"> <math id="i22" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mo>-</mo> </mrow> </msubsup> </math> </span>] and [ <span class="inline-formula"> <math id="i23" overflow="scroll"> <msubsup> <mrow> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>3</mn> </mrow> <mrow> <mo>-</mo> </mrow> </msubsup> </math> </span>] are expected to change slowly between 2015 and 2023, unless <span class="inline-formula"> <math id="i24" overflow="scroll"> <msub> <mrow> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </math> </span> and NOx emissions decrease faster in the future than in the recent past. </p>

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer.

          The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between approximately 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li+ ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described. (c) 2007 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 23 2018
                : 201803295
                Article
                10.1073/pnas.1803295115
                6094106
                30037992
                1e1a9f5c-7b24-4fa8-a993-1d44d2c541ef
                © 2018

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article