23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visual Acuity of Simulated Thalamic Visual Prostheses in Normally Sighted Humans

      research-article
      , , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simulation in normally sighted individuals is a crucial tool to evaluate the performance of potential visual prosthesis designs prior to human implantation of a device. Here, we investigated the effects of electrode count on visual acuity, learning rate and response time in 16 normally sighted subjects using a simulated thalamic visual prosthesis, providing the first performance reports for thalamic designs. A new letter recognition paradigm using a multiple-optotype two-alternative forced choice task was adapted from the Snellen eye chart, and specifically devised to be readily communicated to both human and non-human primate subjects. Validation of the method against a standard Snellen acuity test in 21 human subjects showed no significant differences between the two tests. The novel task was then used to address three questions about simulations of the center-weighted phosphene patterns typical of thalamic designs: What are the expected Snellen acuities for devices with varying numbers of contacts, do subjects display rapid adaptation to the new visual modality, and can response time in the task provide clues to the mechanisms of perception in low-resolution artificial vision? Population performance (hit rate) was significantly above chance when viewing Snellen 20/200 optotypes (Log MAR 1.0) with 370 phosphenes in the central 10 degrees of vision, ranging to Snellen 20/800 (Log MAR 1.6) with 25 central phosphenes. Furthermore, subjects demonstrated learning within the 1–2 hours of task experience indicating the potential for an effective rehabilitation and possibly better visual performance after a longer period of training. Response time differences suggest that direct letter perception occurred when hit rate was above 75%, whereas a slower strategy like feature-based pattern matching was used in conditions of lower relative resolution. As pattern matching can substantially boost effective acuity, these results suggest post-implant therapy should specifically address feature detection skills.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The role of the thalamus in the flow of information to the cortex.

          The lateral geniculate nucleus is the best understood thalamic relay and serves as a model for all thalamic relays. Only 5-10% of the input to geniculate relay cells derives from the retina, which is the driving input. The rest is modulatory and derives from local inhibitory inputs, descending inputs from layer 6 of the visual cortex, and ascending inputs from the brainstem. These modulatory inputs control many features of retinogeniculate transmission. One such feature is the response mode, burst or tonic, of relay cells, which relates to the attentional demands at the moment. This response mode depends on membrane potential, which is controlled effectively by the modulator inputs. The lateral geniculate nucleus is a first-order relay, because it relays subcortical (i.e. retinal) information to the cortex for the first time. By contrast, the other main thalamic relay of visual information, the pulvinar region, is largely a higher-order relay, since much of it relays information from layer 5 of one cortical area to another. All thalamic relays receive a layer-6 modulatory input from cortex, but higher-order relays in addition receive a layer-5 driver input. Corticocortical processing may involve these corticothalamocortical 're-entry' routes to a far greater extent than previously appreciated. If so, the thalamus sits at an indispensable position for the modulation of messages involved in corticocortical processing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Visual perception in a blind subject with a chronic microelectronic retinal prosthesis.

            A retinal prosthesis was permanently implanted in the eye of a completely blind test subject. This report details the results from the first 10 weeks of testing with the implant subject. The implanted device included an extraocular case to hold electronics, an intraocular electrode array (platinum disks, 4 x 4 arrangement) designed to interface with the retina, and a cable to connect the electronics case to the electrode array. The subject was able to see perceptions of light (spots) on all 16 electrodes of the array. In addition, the subject was able to use a camera to detect the presence or absence of ambient light, to detect motion, and to recognize simple shapes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.

              The feasibility of producing a visual prosthesis for the blind using intracortical microstimulation (ICMS) of the visual cortex was studied in a 42-year-old woman who had been totally blind for 22 years secondary to glaucoma. Thirty-eight microelectrodes were implanted in the right visual cortex, near the occipital pole, for a period of 4 months. Percepts reported as small spots of light, called phosphenes, were produced with 34 of the 38 implanted microelectrodes. Threshold currents for phosphene generation with trains of biphasic pulses were as low as 1.9 microA, and most of the microelectrodes had thresholds below 25 microA. Phosphene brightness could be modified with stimulus amplitude, frequency and pulse duration. Repeated stimulation over a period of minutes produced a gradual decrease in phosphene brightness. Phosphenes did not flicker. The apparent size of phosphenes ranged from a "pin-point' to a "nickel' (20 mm diameter coin) held at arm's length. Phosphene size usually decreased as stimulation current was increased but increased slightly as the train length (TL) was increased. At levels of stimulation near threshold, the phosphenes were often reported to have colours. As the stimulation level was increased, the phosphenes generally became white, greyish or yellowish. Individual phosphenes appeared at different distances from the subject. When two phosphenes were simultaneously generated, the apparent distances of the individual phosphenes sometimes changed to make them appear to be at about the same distance. When three or more phosphenes were simultaneously generated, they became coplanar. Except for rare occasions, phosphenes extinguished rapidly at the termination of the stimulation train. When stimulation TLs were increased beyond 1 s, phosphenes usually disappeared before the end of the train. The duration of phosphene perception could be increased by interrupting a long stimulation train with brief pauses in stimulation. Intracortical microelectrodes spaced 500 microns apart generated separate phosphenes, but microelectrodes spaced 250 microns typically did not. This two-point resolution was about five times closer than has typically been achieved with surface stimulation. With some individual microelectrodes, a second closely spaced phosphene was sometimes produced by increasing the stimulation current. Phosphenes moved with eye movements. When up to six phosphenes were simultaneously elicited, they all moved with the same relative orientation during eye movements. All phosphenes were located in the left hemi-field with the majority above the horizontal meridian. There was a clustering of most of the phosphenes within a relatively small area of visual space. The potentially greater microelectrode density and lower power requirements of ICMS compared with surface stimulation appears encouraging for a visual prosthesis. However, further studies with blind subjects are required to optimize stimulation parameters and test complex image recognition before the feasibility of a visual prosthesis based on ICMS can be established.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                27 September 2013
                : 8
                : 9
                : e73592
                Affiliations
                [1]Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                CSIC-Univ Miguel Hernandez, Spain
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BB MV JSP. Performed the experiments: BB MV AJ JSP. Analyzed the data: BB MB JSP. Wrote the paper: BB MV JSP. Apparatus: JSP.

                Article
                PONE-D-13-04699
                10.1371/journal.pone.0073592
                3785446
                24086286
                1e1fd357-0697-430f-aac3-6f14b052591c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 January 2013
                : 24 July 2013
                Page count
                Pages: 13
                Funding
                This research was performed with support from the National Eye Institute through grant EY019679 (BB, MV, AJ, JSP; http://www.nei.nih.gov), from Institut d'Optique (BB; http://www.institutoptique.fr), and from the Rappaport Foundation (JSP; http://www.rappaportfoundation.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article