Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Equivalent Circuit for Magnetoelectric Read and Write Operations

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: not found
          • Article: not found

          Single-Domain Circular Nanomagnets

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Spin-current interaction with a monodomain magnetic body: A model study

             J Sun (2000)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of negative capacitance to provide voltage amplification for low power nanoscale devices.

              It is well-known that conventional field effect transistors (FETs) require a change in the channel potential of at least 60 mV at 300 K to effect a change in the current by a factor of 10, and this minimum subthreshold slope S puts a fundamental lower limit on the operating voltage and hence the power dissipation in standard FET-based switches. Here, we suggest that by replacing the standard insulator with a ferroelectric insulator of the right thickness it should be possible to implement a step-up voltage transformer that will amplify the gate voltage thus leading to values of S lower than 60 mV/decade and enabling low voltage/low power operation. The voltage transformer action can be understood intuitively as the result of an effective negative capacitance provided by the ferroelectric capacitor that arises from an internal positive feedback that in principle could be obtained from other microscopic mechanisms as well. Unlike other proposals to reduce S, this involves no change in the basic physics of the FET and thus does not affect its current drive or impose other restrictions.
                Bookmark

                Author and article information

                Journal
                PRAHB2
                Physical Review Applied
                Phys. Rev. Applied
                American Physical Society (APS)
                2331-7019
                April 2018
                April 16 2018
                : 9
                : 4
                Article
                10.1103/PhysRevApplied.9.044020
                © 2018

                https://link.aps.org/licenses/aps-default-license

                https://link.aps.org/licenses/aps-default-accepted-manuscript-license

                Comments

                Comment on this article