18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design principles for rapid folding of knotted DNA nanostructures

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Knots are some of the most remarkable topological features in nature. Self-assembly of knotted polymers without breaking or forming covalent bonds is challenging, as the chain needs to be threaded through previously formed loops in an exactly defined order. Here we describe principles to guide the folding of highly knotted single-chain DNA nanostructures as demonstrated on a nano-sized square pyramid. Folding of knots is encoded by the arrangement of modules of different stability based on derived topological and kinetic rules. Among DNA designs composed of the same modules and encoding the same topology, only the one with the folding pathway designed according to the ‘free-end' rule folds efficiently into the target structure. Besides high folding yield on slow annealing, this design also folds rapidly on temperature quenching and dilution from chemical denaturant. This strategy could be used to design folding of other knotted programmable polymers such as RNA or proteins.

          Abstract

          Driven by complementary base pairing, artificial single-chain DNA is capable of forming complex 3D architectures if an appropriate folding pathway can be realised. Here, the authors describe the design principles for rapidly folding structures, exemplified through fabrication of a nanosized square pyramid.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Self-assembly of a nanoscale DNA box with a controllable lid.

          The unique structural motifs and self-recognition properties of DNA can be exploited to generate self-assembling DNA nanostructures of specific shapes using a 'bottom-up' approach. Several assembly strategies have been developed for building complex three-dimensional (3D) DNA nanostructures. Recently, the DNA 'origami' method was used to build two-dimensional addressable DNA structures of arbitrary shape that can be used as platforms to arrange nanomaterials with high precision and specificity. A long-term goal of this field has been to construct fully addressable 3D DNA nanostructures. Here we extend the DNA origami method into three dimensions by creating an addressable DNA box 42 x 36 x 36 nm(3) in size that can be opened in the presence of externally supplied DNA 'keys'. We thoroughly characterize the structure of this DNA box using cryogenic transmission electron microscopy, small-angle X-ray scattering and atomic force microscopy, and use fluorescence resonance energy transfer to optically monitor the opening of the lid. Controlled access to the interior compartment of this DNA nanocontainer could yield several interesting applications, for example as a logic sensor for multiple-sequence signals or for the controlled release of nanocargos.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Rapid prototyping of 3D DNA-origami shapes with caDNAno

            DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long ‘scaffold’ strand can be employed to template the assembly of hundreds of oligonucleotide ‘staple’ strands into a planar antiparallel array of cross-linked helices. We recently adapted this ‘scaffolded DNA origami’ method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional structures self-assembled from DNA bricks.

              We describe a simple and robust method to construct complex three-dimensional (3D) structures by using short synthetic DNA strands that we call "DNA bricks." In one-step annealing reactions, bricks with hundreds of distinct sequences self-assemble into prescribed 3D shapes. Each 32-nucleotide brick is a modular component; it binds to four local neighbors and can be removed or added independently. Each 8-base pair interaction between bricks defines a voxel with dimensions of 2.5 by 2.5 by 2.7 nanometers, and a master brick collection defines a "molecular canvas" with dimensions of 10 by 10 by 10 voxels. By selecting subsets of bricks from this canvas, we constructed a panel of 102 distinct shapes exhibiting sophisticated surface features, as well as intricate interior cavities and tunnels.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                18 February 2016
                2016
                : 7
                : 10803
                Affiliations
                [1 ]Department of Biotechnology, National Institute of Chemistry , Hajdrihova 19, Ljubljana 1000, Slovenia
                [2 ]Graduate school of Biomedicine, University of Ljubljana , Ljubljana 1000, Slovenia
                [3 ]Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, UK
                [4 ]EN-FIST, Centre of Excellence , Trg Osvobodilne fronte 13, Ljubljana 1000, Slovenia
                [5 ]Faculty of Mathematics and Physics, University of Ljubljana , Jadranska 19, Ljubljana 1000, Slovenia
                [6 ]FAMNIT, University of Primorska , Glagoljaška 8, Koper 6000, Slovenia
                Author notes
                Author information
                http://orcid.org/0000-0002-6337-5251
                Article
                ncomms10803
                10.1038/ncomms10803
                4759626
                26887681
                1e4b7ef0-ef73-40db-b6ec-7faefc490469
                Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 02 October 2015
                : 20 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article