65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The zinc finger transcription factor CONSTANS has a well-established central role in the mechanism for photoperiod sensing in Arabidopsis, integrating light and circadian clock signals to upregulate the florigen gene FT under long-day but not short-day conditions. Although CONSTANS-LIKE ( COL) genes in other species have also been shown to regulate flowering time, it is not clear how widely this central role in photoperiod sensing is conserved. Legumes are a major plant group and various legume species show significant natural variation for photoperiod responsive flowering. Orthologs of several Arabidopsis genes have been shown to participate in photoperiodic flowering in legumes, but the possible function of COL genes as integrators of the photoperiod response has not yet been examined in detail. Here we characterize the COL family in the temperate long-day legume Medicago truncatula, using expression analyses, reverse genetics, transient activation assays and Arabidopsis transformation. Our results provide several lines of evidence suggesting that COL genes are unlikely to have a central role in the photoperiod response mechanism in this species.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants

          Background We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes. Results We give an example of expression of heme-thiolate P450 to demonstrate effectiveness of this system. We have also designed vectors that take advantage of a dual luciferase assay system to analyse promoter sequences or post-transcriptional regulation of gene expression. We have demonstrated their utility by co-expression of putative transcription factors and the promoter sequence of potential target genes and show how orthologous promoter sequences respond to these genes. Finally, we have constructed a vector that has allowed us to investigate design features of hairpin constructs related to their ability to initiate RNA silencing, and have used these tools to study cis-regulatory effect of intron-containing gene constructs. Conclusion In developing a series of vectors ideally suited to transient expression analysis we have provided a resource that further advances the application of this technology. These minimal vectors are ideally suited to conventional cloning methods and we have used them to demonstrate their flexibility to investigate enzyme activity, transcription regulation and post-transcriptional regulatory processes in transient assays.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS.

            A major quantitative trait locus (QTL) controlling response to photoperiod, Hd1, was identified by means of a map-based cloning strategy. High-resolution mapping using 1505 segregants enabled us to define a genomic region of approximately 12 kb as a candidate for Hd1. Further analysis revealed that the Hd1 QTL corresponds to a gene that is a homolog of CONSTANS in Arabidopsis. Sequencing analysis revealed a 43-bp deletion in the first exon of the photoperiod sensitivity 1 (se1) mutant HS66 and a 433-bp insertion in the intron in mutant HS110. Se1 is allelic to the Hd1 QTL, as determined by analysis of two se1 mutants, HS66 and HS110. Genetic complementation analysis proved the function of the candidate gene. The amount of Hd1 mRNA was not greatly affected by a change in length of the photoperiod. We suggest that Hd1 functions in the promotion of heading under short-day conditions and in inhibition under long-day conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions.

              Heading date 3a (Hd3a) has been detected as a heading-date-related quantitative trait locus in a cross between rice cultivars Nipponbare and Kasalath. A previous study revealed that the Kasalath allele of Hd3a promotes heading under short-day (SD) conditions. High-resolution linkage mapping located the Hd3a locus in a approximately 20-kb genomic region. In this region, we found a candidate gene that shows high similarity to the FLOWERING LOCUS T (FT) gene, which promotes flowering in Arabidopsis: Introduction of the gene caused an early-heading phenotype in rice. The transcript levels of Hd3a were increased under SD conditions. The rice Heading date 1 (Hd1) gene, a homolog of CONSTANS (CO), has been shown to promote heading under SD conditions. By expression analysis, we showed that the amount of Hd3a mRNA is up-regulated by Hd1 under SD conditions, suggesting that Hd3a promotes heading under the control of Hd1. These results indicate that Hd3a encodes a protein closely related to Arabidopsis FT and that the function and regulatory relationship with Hd1 and CO, respectively, of Hd3a and FT are conserved between rice (an SD plant) and Arabidopsis (a long-day plant).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                16 July 2014
                18 September 2014
                2014
                : 5
                : 486
                Affiliations
                [1] 1School of Biological Sciences, University of Tasmania Hobart, TAS, Australia
                [2] 2Department of Biochemistry, University of Otago Dunedin, New Zealand
                [3] 3Plant Biology Division, Samuel Roberts Noble Foundation Ardmore, OK, USA
                Author notes

                Edited by: Maria Von Korff Schmising, Max Planck Society, Germany

                Reviewed by: Steven B. Cannon, United States Department of Agriculture - Agricultural Research Service, USA; Chiara Campoli, Max Planck Institute for Plant Breeding Research, Germany

                *Correspondence: James L. Weller, School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia e-mail: jim.weller@ 123456utas.edu.au

                This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2014.00486
                4166892
                25278955
                1e5898e1-3321-4a76-a51d-aacb5115ca04
                Copyright © 2014 Wong, Hecht, Picard, Diwadkar, Laurie, Wen, Mysore, Macknight and Weller.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 June 2014
                : 03 September 2014
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 62, Pages: 10, Words: 7520
                Categories
                Plant Science
                Original Research Article

                Plant science & Botany
                legume,flowering,photoperiod,medicago,constans
                Plant science & Botany
                legume, flowering, photoperiod, medicago, constans

                Comments

                Comment on this article