62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recurrent ESR1- CCDC170 rearrangements in an aggressive subset of estrogen-receptor positive breast cancers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Characterizing the genetic alterations leading to the more aggressive forms of estrogen receptor positive (ER+) breast cancers are of critical significance in breast cancer management. Here we identify recurrent rearrangements between estrogen receptor gene ESR1 and its neighbor CCDC170, which are enriched in the more aggressive and endocrine-resistant luminal-B tumors, through large-scale analyses of breast cancer transcriptome and copy number alterations. Further screening of 200 ER+ breast cancers identifies eight ESR1-CCDC170 positive tumors. These fusions encode N-terminally truncated CCDC170 proteins (ΔCCDC170). When introduced into ER+ breast cancer cells, ΔCCDC170 leads to markedly increased cell motility and anchorage-independent growth, reduced endocrine sensitivity, and enhanced xenograft tumor formation. Mechanistic studies suggest that ΔCCDC170 engages Gab1 signalosome to potentiate growth factor signaling and enhance cell motility. Together, this study identifies neoplastic ESR1-CCDC170 fusions in a more aggressive subset of ER+ breast cancer, which suggests a new concept of ER pathobiology in breast cancer.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Direct multiplexed measurement of gene expression with color-coded probe pairs.

          We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer

            Background Gene expression profiling of breast cancer has identified two biologically distinct estrogen receptor (ER)-positive subtypes of breast cancer: luminal A and luminal B. Luminal B tumors have higher proliferation and poorer prognosis than luminal A tumors. In this study, we developed a clinically practical immunohistochemistry assay to distinguish luminal B from luminal A tumors and investigated its ability to separate tumors according to breast cancer recurrence-free and disease-specific survival. Methods Tumors from a cohort of 357 patients with invasive breast carcinomas were subtyped by gene expression profile. Hormone receptor status, HER2 status, and the Ki67 index (percentage of Ki67-positive cancer nuclei) were determined immunohistochemically. Receiver operating characteristic curves were used to determine the Ki67 cut point to distinguish luminal B from luminal A tumors. The prognostic value of the immunohistochemical assignment for breast cancer recurrence-free and disease-specific survival was investigated with an independent tissue microarray series of 4046 breast cancers by use of Kaplan–Meier curves and multivariable Cox regression. Results Gene expression profiling classified 101 (28%) of the 357 tumors as luminal A and 69 (19%) as luminal B. The best Ki67 index cut point to distinguish luminal B from luminal A tumors was 13.25%. In an independent cohort of 4046 patients with breast cancer, 2847 had hormone receptor–positive tumors. When HER2 immunohistochemistry and the Ki67 index were used to subtype these 2847 tumors, we classified 1530 (59%, 95% confidence interval [CI] = 57% to 61%) as luminal A, 846 (33%, 95% CI = 31% to 34%) as luminal B, and 222 (9%, 95% CI = 7% to 10%) as luminal–HER2 positive. Luminal B and luminal–HER2-positive breast cancers were statistically significantly associated with poor breast cancer recurrence-free and disease-specific survival in all adjuvant systemic treatment categories. Of particular relevance are women who received tamoxifen as their sole adjuvant systemic therapy, among whom the 10-year breast cancer–specific survival was 79% (95% CI = 76% to 83%) for luminal A, 64% (95% CI = 59% to 70%) for luminal B, and 57% (95% CI = 47% to 69%) for luminal–HER2 subtypes. Conclusion Expression of ER, progesterone receptor, and HER2 proteins and the Ki67 index appear to distinguish luminal A from luminal B breast cancer subtypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer.

              The EML4-ALK fusion gene has been detected in approximately 7% of Japanese non-small cell lung cancers (NSCLC). We determined the frequency of EML4-ALK in Caucasian NSCLC and in NSCLC cell lines. We also determined whether TAE684, a specific ALK kinase inhibitor, would inhibit the growth of EML4-ALK-containing cell lines in vitro and in vivo. We screened 305 primary NSCLC [both U.S. (n = 138) and Korean (n = 167) patients] and 83 NSCLC cell lines using reverse transcription-PCR and by exon array analyses. We evaluated the efficacy of TAE684 against NSCLC cell lines in vitro and in vivo. We detected four different variants, including two novel variants, of EML4-ALK using reverse transcription-PCR in 8 of 305 tumors (3%) and 3 of 83 (3.6%) NSCLC cell lines. All EML4-ALK-containing tumors and cell lines were adenocarcinomas. EML4-ALK was detected more frequently in NSCLC patients who were never or light (<10 pack-years) cigarette smokers compared with current/former smokers (6% versus 1%; P = 0.049). TAE684 inhibited the growth of one of three (H3122) EML4-ALK-containing cell lines in vitro and in vivo, inhibited Akt phosphorylation, and caused apoptosis. In another EML4-ALK cell line, DFCI032, TAE684 was ineffective due to coactivation of epidermal growth factor receptor and ERBB2. The combination of TAE684 and CL-387,785 (epidermal growth factor receptor/ERBB2 kinase inhibitor) inhibited growth and Akt phosphorylation and led to apoptosis in the DFCI032 cell line. EML4-ALK is found in the minority of NSCLC. ALK kinase inhibitors alone or in combination may nevertheless be clinically effective treatments for NSCLC patients whose tumors contain EML4-ALK.
                Bookmark

                Author and article information

                Journal
                101528555
                37539
                Nat Commun
                Nat Commun
                Nature communications
                2041-1723
                16 July 2014
                07 August 2014
                2014
                07 February 2015
                : 5
                : 4577
                Affiliations
                [1 ]Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
                [2 ]Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
                [3 ]Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
                [4 ]Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
                [5 ]Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
                [6 ]Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
                Author notes
                [# ]Corresponding Author: Xiaosong Wang, Assistant Professor, Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS600, Houston, TX, 77030, Phone (O): 713-798-1624, Fax: 713-798-1642, xiaosonw@ 123456bcm.edu
                [*]

                These authors contributed equally to this work.

                Article
                NIHMS610894
                10.1038/ncomms5577
                4130357
                25099679
                1e68d580-7e98-4f7d-a9d8-2c59d125cbb9
                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article