5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Regulation of Vascular Smooth Muscle Growth by -Adrenoreceptor Subtypesin Vitroandin Situ

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rat aorta smooth muscle cells which express all three alpha 1-adrenoreceptors (alpha 1A, alpha 1B and alpha 1D) were used to determine the effect of stimulation of alpha 1-adrenergic receptor subtypes on cell growth. "Combined" alpha 1-adrenoreceptor subtype stimulation with norepinephrine alone caused a concentration-dependent, prazosin-sensitive increase in protein content and synthesis: 48 h of stimulation at 1 microM increased cell protein to 216 +/- 40% of time-matched controls (p = 0.008) and RNA to 140 +/- 13% (p = 0.03); protein synthesis increased to 167 +/- 13% (p < 0.01) after 24 h. Stimulation with norepinephrine plus the selective alpha 1A/alpha 1D antagonist 5-methylurapidil produced greater increases in alpha-actin mRNA (270 +/- 40% at 8 h; p = 0.007), total cell protein (220 +/- 45% at 24 h; p = 0.004), and RNA (135 +/- 8% at 24 h; p = 0.01). These effects were prevented by pretreatment with the selective alpha 1B antagonist chloroethylclonidine. Comparable results were obtained for intact aortae. Stimulation with norepinephrine plus 5-methylurapidil increased (p < 0.05) tissue protein, RNA, dry weight, and alpha-actin mRNA; and as in culture cells, combined stimulation with norepinephrine alone attenuated these responses. By comparison, adventitia (fibroblasts) was unaffected. Removal of endothelial cells had no effect. alpha 1B mRNA decreased by 42 +/- 12% (p = 0.01) in cultured cells during combined alpha 1-adrenoreceptor stimulation and by 23 +/- 8% (p = 0.03) for intact aorta. alpha 1D and beta-actin mRNA were unchanged in cultured cells, aorta media, and adventitia. These findings suggest that prolonged stimulation of chloroethylclonidine-sensitive, possibly alpha 1B-adrenoceptors induces hypertrophy of arterial smooth muscle cells and that stimulation of 5-methylurapidil-sensitive, non-alpha 1B-adrenoreceptors attenuates this growth response.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Model systems for the study of seven-transmembrane-segment receptors.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells.

            We have explored the hypothesis that contractile agonists are important regulators of smooth muscle cell growth by examining the effects of one potent contractile agonist, angiotensin II (AII), on both cell proliferation and cellular hypertrophy. AII neither stimulated proliferation of cells made quiescent in a defined serum-free media nor augmented cell proliferation induced by serum or platelet-derived growth factor. However, AII did induce cellular hypertrophy of postconfluent quiescent cultures following 4 days of treatment, increasing smooth muscle cell protein content by 20% as compared with vehicle-treated controls. AII-induced hypertrophy was maximal at 1 microM, had an ED50 of 5 nM, and was blocked by the specific AII receptor antagonist Sar1,Ile8 AII. The cellular hypertrophy was due to an increase in protein synthesis, which was elevated within 6-9 hours following AII treatment, while no changes in protein degradation were apparent. AII was even more effective in inducing hypertrophy of subconfluent cultures, causing a 38% increase in protein content after 4 days of treatment (1 microM) and showing a maximal response at concentrations as low as 0.1 nM. Interestingly, in subconfluent cultures, AII treatment (1 microM, 4 days) was associated with a 50% increase in the fraction of cells with 4C DNA content with the virtual absence of cells in S-phase of the cell cycle, consistent with either arrest of cells in the G2 phase of the cell cycle or development of tetraploidy.(ABSTRACT TRUNCATED AT 250 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity.

              The alpha 1B-adrenergic receptor (alpha 1B-ADR) is a member of the G-protein-coupled family of transmembrane receptors. When transfected into Rat-1 and NIH 3T3 fibroblasts, this receptor induces focus formation in an agonist-dependent manner. Focus-derived, transformed fibroblasts exhibit high levels of functional alpha 1B-ADR expression, demonstrate a catecholamine-induced enhancement in the rate of cellular proliferation, and are tumorigenic when injected into nude mice. Induction of neoplastic transformation by the alpha 1B-ADR, therefore, identifies this normal cellular gene as a protooncogene. Mutational alteration of this receptor can lead to activation of this protooncogene, resulting in an enhanced ability of agonist to induce focus formation with a decreased latency and quantitative increase in transformed foci. In contrast to cells expressing the wild-type alpha 1B-ADR, focus formation in "oncomutant"-expressing cell lines appears constitutively activated with the generation of foci in unstimulated cells. Further, these cell lines exhibit near-maximal rates of proliferation even in the absence of catecholamine supplementation. They also demonstrate an enhanced ability for tumor generation in nude mice with a decreased period of latency compared with cells expressing the wild-type receptor. Thus, the alpha 1B-ADR gene can, when overexpressed and activated, function as an oncogene inducing neoplastic transformation. Mutational alteration of this receptor gene can result in the activation of this protooncogene, enhancing its oncogenic potential. These findings suggest that analogous spontaneously occurring mutations in this class of receptor proteins could play a key role in the induction or progression of neoplastic transformation and atherosclerosis.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                December 29 1995
                December 29 1995
                : 270
                : 52
                : 30980-30988
                Article
                10.1074/jbc.270.52.30980
                8537355
                1e6b503d-a9df-45f0-9f75-147470db85c8
                © 1995
                History

                Comments

                Comment on this article