+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Roles of Bcl-3 in the Pathogenesis of Murine Type 1 Diabetes

      , , , ,


      American Diabetes Association

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          It has long been recognized that autoimmunity is often associated with immunodeficiency. The mechanism underlying this paradox is not well understood. Bcl-3 (B-cell lymphoma 3) is an atypical member of the IκB (inhibitor of the nuclear factor-κB) family that is required for lymphoid organogenesis and germinal center responses. Mice deficient in Bcl-3 are immunodeficient because of the microarchitectural defects of their lymphoid organs. The goal of this study is to define the potential roles of Bcl-3 in type 1 diabetes.


          Bcl-3–deficient NOD mice were generated by backcrossing Bcl-3–deficient C57BL/6 mice to NOD mice. Spontaneous and induced type 1 diabetes were studied in these mice by both pathologic and immunologic means. The effect of Bcl-3 on inflammatory gene transcription was evaluated in a promoter reporter assay.


          We found that Bcl-3–deficient NOD and C57BL/6 mice were, paradoxically, more susceptible to autoimmune diabetes than wild-type mice. The increase in diabetes susceptibility was caused by Bcl-3 deficiency in hematopoietic cells but not nonhematopoietic cells. Bcl-3 deficiency did not significantly affect anti-islet Th1 or Th2 autoimmune responses, but markedly increased inflammatory chemokine and T helper 17 (Th17)-type cytokine expression. Upon transfection, Bcl-3 significantly inhibited the promoter activities of inflammatory chemokine and cytokine genes.


          These results indicate that in addition to mediating lymphoid organogenesis, Bcl-3 prevents autoimmune diabetes by inhibiting inflammatory chemokine and cytokine gene transcription. Thus, a single Bcl3 gene mutation leads to both autoimmunity and immunodeficiency.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Introduction to NF-kappaB: players, pathways, perspectives.

           Ian Gilmore (2006)
          This article serves as an introduction to the collection of reviews on nuclear factor-kappaB (NF-kappaB). It provides an overview of the discovery and current status of NF-kappaB as a research topic. Described are the structures, activities and regulation of the proteins in the NF-kappaB family of transcription factors. NF-kappaB signaling is primarily regulated by inhibitor kappaB (IkappaB) proteins and the IkappaB kinase complex through two major pathways: the canonical and non-canonical NF-kappaB pathways. The organization and focus of articles included in the following reviews are described, as well as likely future areas of research interest on NF-kappaB.
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB.

            Activation of the transcription factor nuclear factor-kappaB (NF-kappaB) has been suggested to participate in chronic disorders, such as diabetes and its complications. In contrast to the short and transient activation of NF-kappaB in vitro, we observed a long-lasting sustained activation of NF-kappaB in the absence of decreased IkappaBalpha in mononuclear cells from patients with type 1 diabetes. This was associated with increased transcription of NF-kappaBp65. A comparable increase in NF-kappaBp65 antigen and mRNA was also observed in vascular endothelial cells of diabetic rats. As a mechanism, we propose that binding of ligands such as advanced glycosylation end products (AGEs), members of the S100 family, or amyloid-beta peptide (Abeta) to the transmembrane receptor for AGE (RAGE) results in protein synthesis-dependent sustained activation of NF-kappaB both in vitro and in vivo. Infusion of AGE-albumin into mice bearing a beta-globin reporter transgene under control of NF-kappaB also resulted in prolonged expression of the reporter transgene. In vitro studies showed that RAGE-expressing cells induced sustained translocation of NF-kappaB (p50/p65) from the cytoplasm into the nucleus for >1 week. Sustained NF-kappaB activation by ligands of RAGE was mediated by initial degradation of IkappaB proteins followed by new synthesis of NF-kappaBp65 mRNA and protein in the presence of newly synthesized IkappaBalpha and IkappaBbeta. These data demonstrate that ligands of RAGE can induce sustained activation of NF-kappaB as a result of increased levels of de novo synthesized NF-kappaBp65 overriding endogenous negative feedback mechanisms and thus might contribute to the persistent NF-kappaB activation observed in hyperglycemia and possibly other chronic diseases.
              • Record: found
              • Abstract: not found
              • Article: not found

              The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD.


                Author and article information

                From the Department of Pathology and Laboratory of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.
                Author notes
                Corresponding author: Youhai H. Chen,

                The current address for S.-J.Z. is College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China.

                American Diabetes Association
                October 2010
                9 July 2010
                : 59
                : 10
                : 2549-2557
                © 2010 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See for details.

                Funded by: National Institutes of Health
                Award ID: GM0 85112
                Award ID: AI 50059
                Award ID: DK0 70691
                Award ID: AI0 69289
                Immunology and Transplantation

                Endocrinology & Diabetes


                Comment on this article