1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Growth hormone pulsatility profile characteristics following acute heavy resistance exercise

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Hormonal and growth factor responses to heavy resistance exercise protocols.

          To examine endogenous anabolic hormone and growth factor responses to various heavy resistance exercise protocols (HREPs), nine male subjects performed each of six randomly assigned HREPs, which consisted of identically ordered exercises carefully designed to control for load [5 vs. 10 repetitions maximum (RM)], rest period length (1 vs. 3 min), and total work effects. Serum human growth hormone (hGH), testosterone (T), somatomedin-C (SM-C), glucose, and whole blood lactate (HLa) concentrations were determined preexercise, midexercise (i.e., after 4 of 8 exercises), and at 0, 5, 15, 30, 60, 90, and 120 min postexercise. All HREPs produced significant (P less than 0.05) temporal increases in serum T concentrations, although the magnitude and time point of occurrence above resting values varied across HREPs. No differences were observed for T when integrated areas under the curve (AUCs) were compared. Although not all HREPs produced increases in serum hGH, the highest responses were observed consequent to the H10/1 exercise protocol (high total work, 1 min rest, 10-RM load) for both temporal and time integrated (AUC) responses. The pattern of SM-C increases varied among HREPs and did not consistently follow hGH changes. Whereas temporal changes were observed, no integrated time (AUC) differences between exercise protocols occurred. These data indicate that the release patterns (temporal or time integrated) observed are complex functions of the type of HREPs utilized and the physiological mechanisms involved with determining peripheral circulatory concentrations (e.g., clearance rates, transport, receptor binding). All HREPs may not affect muscle and connective tissue growth in the same manner because of possible differences in hormonal and growth factor release.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human growth hormone and human aging.

            In humans, both aging and GH deficiency are associated with reduced protein synthesis, decreased lean body and bone mass, and increased percent body fat. In healthy individuals, spontaneous and stimulated GH secretion, as well as circulating IGF-I and IGFBP-3 levels, are significantly decreased with advancing age. The extent to which these age-related changes in GH and IGF-I contribute to alterations in body composition and function remains to be elucidated. GH treatment of GH-deficient adults or old men with reduced IGF-I levels with exogenous GH increases plasma IGF-I, nitrogen retention, and lean body mass, decreases percent body fat, and exerts little effect on bone mineral density. Short-term adverse effects of GH therapy have been minimized by using low-dose regimens, but it is still uncertain whether long-term GH supplementation in adult life increases the risk of metabolic abnormalities or malignancy. Administration of GHRH, which has been shown to maintain the pattern of pulsatile GH secretion in old men, may represent another possible physiological approach to therapy. It may be justifiable initially to limit use of GH to certain elderly patients such as those suffering from catabolic illnesses, malnourishment, burns, cachexia, etc. A great deal more research will be necessary to determine whether normalization of GH and IGF-I levels in healthy older persons will lead to improvements in their physical and psychological functional capacity and quality of life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men.

              Mean plasma GH concentrations are controlled by the frequency, amplitude, and duration of underlying GH secretory bursts as well as by the half-life of endogenous GH. We investigated the specific mechanisms that subserve the clinically recognized negative effects of age and adiposity on mean serum GH concentrations. To this end, 21 healthy men, aged 21-71 yr, who were of nearly normal body weight underwent blood sampling at 10-min intervals for 24 h. Deconvolution analysis was used to estimate specific features of GH secretion and clearance. Compared to younger men, the older tertile of men had significant reductions in 1) GH secretory burst frequency, 2) the half-life of endogenous GH, and 3) the daily GH secretory rate, but not 4) GH secretory burst half-duration, amplitude, or mass. Linear regression analysis disclosed that age was a major negative statistical determinant of GH secretory burst frequency (r = -0.80; P = 0.005) and endogenous GH half-life (r = -0.70; P = 0.024). Body mass index, an indicator of relative obesity, was a significant negative correlate of GH half-life (P = 0.045) and GH secretory burst amplitude (P = 0.031). Age and body mass index each correlated negatively with the daily GH secretion rate (P = 0.0031 and P = 0.027, respectively), and together accounted for more than 60% of the variability in 24-h GH production rates (r = -0.78; P = 0.00056). On the average, for a normal body mass index, each decade of increasing age attenuated the GH production rate by 14% and the GH half-life by 6%. Conversely, each unit increase in body mass index, at a given age, reduced the daily GH secretion rate by 6%. We conclude that age and relative adiposity are distinct and specific correlates of individual attributes of GH secretion and clearance in men.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Physiology
                Journal of Applied Physiology
                American Physiological Society
                8750-7587
                1522-1601
                July 2001
                July 2001
                : 91
                : 1
                : 163-172
                Affiliations
                [1 ]Intercollege Graduate Program in Physiology,
                [2 ]General Clinical Research Center at Noll Laboratory,
                [3 ]Department of Kinesiology,
                [4 ]Department of Biochemistry and Molecular Biology, and
                [5 ]Department of Animal Sciences, The Pennsylvania State University, University Park, Pennsylvania 16801; and
                [6 ]The Human Performance Laboratory, Ball State University, Muncie, Indiana 47306
                Article
                10.1152/jappl.2001.91.1.163
                1e851bd4-b625-4a4e-a7b7-2942f474e602
                © 2001
                History

                Comments

                Comment on this article