43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Forever Love: The Hitherto Earliest Record of Copulating Insects from the Middle Jurassic of China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mating behaviors have been widely studied for extant insects. However, cases of mating individuals are particularly rare in the fossil record of insects, and most of them involved preservation in amber while only in rare cases found in compression fossils. This considerably limits our knowledge of mating position and genitalia orientation during the Mesozoic, and hinders our understanding of the evolution of mating behaviors in this major component of modern ecosystems.

          Principal Finding

          Here we report a pair of copulating froghoppers, Anthoscytina perpetua sp. nov., referable to the Procercopidae, from the Middle Jurassic of northeastern China. They exhibit belly-to-belly mating position as preserved, with male's aedeagus inserting into the female's bursa copulatrix. Abdominal segments 8 to 9 of male are disarticulated suggesting these segments were twisted and flexed during mating. Due to potential taphonomic effect, we cannot rule out that they might have taken side-by-side position, as in extant froghoppers. Genitalia of male and female, based on paratypes, show symmetric structures.

          Conclusions/Significance

          Our findings, consistent with those of extant froghoppers, indicate froghoppers' genitalic symmetry and mating position have remained static for over 165 million years.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of asymmetric genitalia in spiders and insects.

          Asymmetries are a pervading phenomenon in otherwise bilaterally symmetric organisms and recent studies have highlighted their potential impact on our understanding of fundamental evolutionary processes like the evolution of development and the selection for morphological novelties caused by behavioural changes. One character system that is particularly promising in this respect is animal genitalia because (1) asymmetries in genitalia have evolved many times convergently, and (2) the taxonomic literature provides a tremendous amount of comparative data on these organs. This review is an attempt to focus attention on this promising but neglected topic by summarizing what we know about insect genital asymmetries, and by contrasting this with the situation in spiders, a group in which genital asymmetries are rare. In spiders, only four independent origins of genital asymmetry are known, two in Theridiidae (Tidarren/Echinotheridion, Asygyna) and two in Pholcidae (Metagonia, Kaliana). In insects, on the other hand, genital asymmetry is a widespread and common phenomenon. In some insect orders or superorders, genital asymmetry is in the groundplan (e.g. Dictyoptera, Embiidina, Phasmatodea), in others it has evolved multiple times convergently (e.g. Coleoptera, Diptera, Heteroptera, Lepidoptera). Surprisingly, the huge but widely scattered information has not been reviewed for over 70 years. We combine data from studies on taxonomy, mating behaviour, genital mechanics, and phylogeny, to explain why genital asymmetry is so common in insects but so rare in spiders. We identify further fundamental differences between spider and insect genital asymmetries: (1) in most spiders, the direction of asymmetry is random, in most insects it is fixed; (2) in most spiders, asymmetry evolved first (or only) in the female while in insects genital asymmetry is overwhelmingly limited to the male. We thus propose that sexual selection has played a crucial role in the evolution of insect genital asymmetry, via a route that is accessible to insects but not to spiders. The centerpiece in this insect route to asymmetry is changes in mating position. Available evidence strongly suggests that the plesiomorphic neopteran mating position is a female-above position. Changes to male-dominated positions have occurred frequently, and some of the resulting positions require abdominal twisting, flexing, and asymmetric contact between male and female genitalia. Insects with their median unpaired sperm transfer organ may adopt a one-sided asymmetric position and still transfer the whole amount of sperm. Spiders with their paired sperm transfer organs can only mate in symmetrical or alternating two-sided positions without foregoing transfer of half of their sperm. We propose several hypotheses regarding the evolution of genital asymmetry. One explains morphological asymmetry as a mechanical compensation for evolutionary and behavioural changes of mating position. The morphological asymmetry per se is not advantageous, but rather the newly adopted mating position is. The second hypothesis predicts a split of functions between right and left sides. In contrast to the previous hypothesis, morphological asymmetry per se is advantageous. A third hypothesis evokes internal space constraints that favour asymmetric placement and morphology of internal organs and may secondarily affect the genitalia. Further hypotheses appear supported by a few exceptional cases only.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            U-Pb zircon age for the Daohugou Biota at Ningcheng of Inner Mongolia and comments on related issues

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Traits and evolution of wing venation pattern in paraneopteran insects.

              Two different patterns of wing venation are currently supposed to be present in each of the three orders of Paraneoptera. This is unlikely compared with the situation in other insects where only one pattern exists per order. We propose for all Paraneoptera a new and unique interpretation of wing venation pattern, assuming that the convex cubitus anterior gets fused with the common stem of median and radial veins at or very near to wing base, after separation from concave cubitus posterior, and re-emerges more distally from R + M stem. Thereafter, the vein between concave cubitus posterior and CuA is a specialized crossvein called "cua-cup," proximally concave and distally convex. We show that despite some variations, that is, cua-cup can vary from absent to hypertrophic; CuA can re-emerge together with M or not, or even completely disappear, this new interpretation explains all situations among all fossil and recent paraneopteran lineages. We propose that the characters "CuA fused in a common stem with R and M"and "presence of specialized crossvein cua-cup" are venation apomorphies that support the monophyly of the Paraneoptera. In the light of these characters, we reinterpret several Palaeozoic and early Mesozoic fossils that were ascribed to Paraneoptera, and confirm the attribution of several to this superorder as well as possible attribution of Zygopsocidae (Zygopsocus permianus Tillyard, 1935) as oldest Psocodea. We discuss the situation in extinct Hypoperlida and Miomoptera, suggesting that both orders could well be polyphyletic, with taxa related to Archaeorthoptera, Paraneoptera, or even Holometabola. The Carboniferous Protoprosbolidae is resurrected and retransferred into the Paraneoptera. The genus Lithoscytina is restored. The miomopteran Eodelopterum priscum Schmidt, 1962 is newly revised and considered as a fern pinnule. In addition, the new paraneopteran Bruayaphis oudardi gen. nov. et sp. nov. is described fromthe Upper Carboniferous of France (see Supporting Information). Copyright © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                6 November 2013
                : 8
                : 11
                : e78188
                Affiliations
                [1 ]Key Laboratory of Insect Evolution & Environmental Changes, Capital Normal University, Beijing, P.R. China
                [2 ]Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
                [3 ]State Key Laboratory of Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, P.R. China
                Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Brazil
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DR. Performed the experiments: SL CW HP. Analyzed the data: SL CS HP. Wrote the paper: SL CS HP DR. Photographs and line drawings: SL CW.

                Article
                PONE-D-13-20384
                10.1371/journal.pone.0078188
                3819342
                24223138
                1e85c361-dc5e-4403-a966-3d23615efed5
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 May 2013
                : 3 September 2013
                Page count
                Pages: 9
                Funding
                This research is supported by the National Basic Research Program of China (973 Program) (grant 2012CB821906), the National Natural Science Foundation of China (grants 31172143, 31230065, 31272352 and 41272006), Project of Great Wall Scholar and KEY project of Beijing Municipal Commission of Education (grants KZ201310028033), and China Geological Survey (grant 1212011120115). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article