10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy

      review-article
      ,
      Photosynthesis Research
      Springer Netherlands
      Microalgae, Photosynthetic hydrogen, Sustainability, Energy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

          Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Will plant movements keep up with climate change?

            In the face of anthropogenic climate change, species must acclimate, adapt, move, or die. Although some species are moving already, their ability to keep up with the faster changes expected in the future is unclear. 'Migration lag' is a particular concern with plants, because it could threaten both biodiversity and carbon storage. Plant movements are not realistically represented in models currently used to predict future vegetation and carbon-cycle feedbacks, so there is an urgent need to understand how much of a problem failure to track climate change is likely to be. Therefore, in this review, we compare how fast plants need to move with how fast they can move; that is, the velocity of climate change with the velocity of plant movement. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The future of species under climate change: resilience or decline?

              As climates change across already stressed ecosystems, there is no doubt that species will be affected, but to what extent and which will be most vulnerable remain uncertain. The fossil record suggests that most species persisted through past climate change, whereas forecasts of future impacts predict large-scale range reduction and extinction. Many species have altered range limits and phenotypes through 20th-century climate change, but responses are highly variable. The proximate causes of species decline relative to resilience remain largely obscure; however, recent examples of climate-associated species decline can help guide current management in parallel with ongoing research.
                Bookmark

                Author and article information

                Contributors
                v_bayro@hotmail.com
                Journal
                Photosynth Res
                Photosyn. Res
                Photosynthesis Research
                Springer Netherlands (Dordrecht )
                0166-8595
                1573-5079
                26 February 2017
                26 February 2017
                2017
                : 133
                : 1
                : 49-62
                Affiliations
                ISNI 0000 0004 1937 0546, GRID grid.12136.37, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, , Tel Aviv University, ; 69978 Tel Aviv, Israel
                Article
                350
                10.1007/s11120-017-0350-6
                5500669
                28239761
                1e866048-4e26-47db-ba88-e4ce2aa10ae2
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 25 October 2016
                : 6 February 2017
                Categories
                Review
                Custom metadata
                © Springer Science+Business Media B.V. 2017

                Plant science & Botany
                microalgae,photosynthetic hydrogen,sustainability,energy
                Plant science & Botany
                microalgae, photosynthetic hydrogen, sustainability, energy

                Comments

                Comment on this article