6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      GATA3 Is a Sensitive and Specific Marker of Benign and Malignant Mesonephric Lesions in the Lower Female Genital Tract :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors.

          GATA3 is a transcription factor important in the differentiation of breast epithelia, urothelia, and subsets of T lymphocytes. It has been suggested to be useful in the evaluation of carcinomas of mammary or urothelial origin or metastatic carcinomas, but its distribution in normal and neoplastic tissues is incompletely mapped. In this study, we examined normal developing and adult tissues and 2040 epithelial and 460 mesenchymal or neuroectodermal neoplasms for GATA3 expression to explore its diagnostic value in surgical pathology, using monoclonal antibody (clone L50-823) and Leica Bond automated immunohistochemistry. GATA3 was expressed in trophoblast, fetal and adult epidermis, adult mammary and some salivary gland and sweat gland ductal epithelia, urothelia, distal nephron in developing and adult tissues, some prostatic basal cells, and subsets of T lymphocytes. It was expressed stronger in fetal than in adult mesothelia and was absent in respiratory and gastrointestinal epithelia. In epithelial neoplasms, GATA3 was expressed in >90% of primary and metastatic ductal and lobular carcinomas of the breast, urothelial, and cutaneous basal cell carcinomas and trophoblastic and endodermal sinus tumors. In metastatic breast carcinomas, it was more sensitive than GCDFP. Among squamous cell carcinomas, the expression was highest in the skin (81%) and lower in cervical (33%), laryngeal (16%), and pulmonary tumors (12%). Common positivity was found in skin adnexal tumors (100%), mesothelioma (58%), salivary gland (43%), and pancreatic (37%) ductal carcinomas, whereas frequency of expression in adenocarcinomas of lung, stomach, colon, endometrium, ovary, and prostate was <10%. Chromophobe renal cell carcinoma was a unique renal tumor with frequent positivity (51%), whereas oncocytomas were positive in 17% of cases but other types only rarely. Among mesenchymal and neuroectodermal tumors, paragangliomas were usually positive, which sets these tumors apart from epithelial neuroendocrine tumors. Mesenchymal tumors were only sporadically positive, except epithelia of biphasic synovial sarcomas. GATA3 is a useful marker in the characterization of not only mammary and urothelial but also renal and germ cell tumors, mesotheliomas, and paragangliomas. The multiple specificities of GATA3 should be taken into account when using this marker to detect metastatic mammary or urothelial carcinomas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive analysis of PAX8 expression in human epithelial tumors.

            PAX8 is a paired-box gene important in embryogenesis of the thyroid, Müllerian, and renal/upper urinary tracts, and expression of PAX8 has been previously described in carcinomas from each of these sites. However, a large study including a wide variety of epithelial neoplasms from multiple organ sites other than the thyroid, kidney, or Müllerian system has not been performed. The goal of this study was to evaluate the utility of PAX8 immunostaining based on the evaluation of a wide range of epithelial tumors. PAX8 immunohistochemistry was performed on 1357 tumors (486 tumors in whole-tissue sections and 871 tumors in tissue microarrays, predominantly epithelial) from multiple organs. Only nuclear staining was scored as positive, and tumors were evaluated for the extent and intensity of staining. Western blot analysis with PAX8 was also performed on multiple tumor cell lines. Nuclear PAX8 staining was present in 91% (60 of 66) of thyroid tumors, 90% (158 of 176) of renal cell carcinomas (RCCs), 81% (13 of 16) of renal oncocytomas, 99% (164 of 165) of high-grade ovarian serous carcinomas, 71% (32 of 49) of nonserous ovarian epithelial neoplasms, 91% (10 of 11) of cervical epithelial lesions, and 98% (152 of 155) of endometrial adenocarcinomas. Of the remaining 719 evaluated tumors, only 30 cases (4%), including 12 thymic neoplasms, 3 bladder urothelial carcinomas, 4 lung squamous cell carcinomas, 2 esophageal adenocarcinomas, 1 pancreatic adenocarcinoma, 2 cholangiocarcinomas, 1 ovarian Sertoli-Leydig cell tumor, 1 ovarian sex cord stromal tumor, 3 testicular mixed germ cell tumors, and 1 acinic cell carcinoma, showed at least weak or focal PAX8 positivity. The unexpected finding was diffuse, moderate staining of PAX8 in a subset of thymomas and thymic carcinomas. The 689 remaining tumors, including but not limited to those from the prostate, colon, stomach, liver, adrenal gland, and head and neck, and small cell carcinomas from the lung, cervix, and ovary, were PAX8 negative. PAX8 specificity was confirmed by Western blot analysis, as expression was detected only in ovarian and RCC cell lines. These results show that PAX8 is a highly sensitive marker for thyroid, renal, Müllerian, and thymic tumors. Importantly, all lung adenocarcinomas, breast and adrenal neoplasms, and the majority of gastrointestinal tumors were negative for PAX8. Therefore, PAX8 is an excellent marker for confirming primary tumor site. In a subset of cases, additional markers, including but not limited to thyroid transcription factor-1, RCC, and Wilms tumor-1, may be needed to distinguish between the 3 most common PAX8-positive tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney.

              The mammalian pro- and mesonephros are transient embryonic kidneys essential for urogenital system development. The nephric (Wolffian) duct, which is a central constituent of both structures, elongates caudally along a stereotypical path to reach the hindlimb level where it induces metanephros (adult kidney) formation, while the remaining duct gives rise to the male genital tract (epidydimis, vas deferens). The transcription factors Pax2 and Pax8 are essential for the initiation of pro- and mesonephros development. In a cDNA microarray screen for genes specifically expressed in the pro/mesonephros and regulated by Pax proteins, we identified Gata3, a transcription factor gene associated with hypoparathyroidism, deafness and renal anomaly (HDR) syndrome. Gata3 is already expressed in the pronephric anlage, together with Pax2 and Pax8, suggesting that it may be a direct Pax2/8 target gene. Inactivation of Gata3 by insertion of an Ires-GFP reporter gene resulted in a massive increase in nephric duct cellularity, which was accompanied by enhanced cell proliferation and aberrant elongation of the nephric duct. Interestingly, however, the nephrogenic cord extended, with delayed kinetics, along the entire caudal path up to the level of the hindlimb bud, indicating that extension of the nephric duct and cord is controlled by different guidance cues. At the molecular level, the nephric duct of Gata3(-/-) embryos is characterized by the loss of Ret expression and signaling, which may contribute to the guidance defect of the nephric duct. Together, these results define Gata3 as a key regulator of nephric duct morphogenesis and guidance in the pro/mesonephric kidney.
                Bookmark

                Author and article information

                Journal
                The American Journal of Surgical Pathology
                The American Journal of Surgical Pathology
                Ovid Technologies (Wolters Kluwer Health)
                0147-5185
                2015
                October 2015
                : 39
                : 10
                : 1411-1419
                Article
                10.1097/PAS.0000000000000471
                26135559
                1e89d8ad-cc6c-4994-b68c-887416d8b3fd
                © 2015
                History

                Comments

                Comment on this article