25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corneal endothelium (CE) is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis) through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH 3:H + cotransporter Solute Carrier Family 4 Member 11 (SLC4A11). Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

          Graphic Abstract

          Highlights

          • Glutamine contributes half of TCA cycle intermediates in human corneal endothelium.

          • Glutamine catabolism supplies significant ATP that fuels the endothelial pump function.

          • SLC4A11 (NH 3:2H + cotransporter) knockout shows ammonia related oxidative damage.

          • Loss of SLC4A11 transporter disrupts expression of glutaminolysis enzymes.

          The corneal endothelium (CE) is responsible for maintaining corneal transparency through the action of active transport processes. We report that CE metabolizes the amino acid glutamine producing ATP in support of active transport. In the mouse model of CHED (Congenital Hereditary Endothelial Dystrophy), which manifests corneal edema and loss of transparency, glutamine metabolism is disrupted due to loss of SLC4A11, an NH 3:2H + transporter. This work sheds light on potential clinical therapies to facilitate CE function, the pathogenesis of CHED and Fuchs' Endothelial Corneal Dystrophy, and suggests that the ammonia handling capacity of SLC4A11 is essential for efficient metabolism of glutamine.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found

          Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells

          Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using stable isotope-resolved metabolomics. Using [U-(13)C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-(13)C,(15)N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their (13)C-labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency makes them susceptible to the glutaminase inhibitor BPTES and hence could be targeted for cancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species.

            We identified a p53 target gene, phosphate-activated mitochondrial glutaminase (GLS2), a key enzyme in conversion of glutamine to glutamate, and thereby a regulator of glutathione (GSH) synthesis and energy production. GLS2 expression is induced in response to DNA damage or oxidative stress in a p53-dependent manner, and p53 associates with the GLS2 promoter. Elevated GLS2 facilitates glutamine metabolism and lowers intracellular reactive oxygen species (ROS) levels, resulting in an overall decrease in DNA oxidation as determined by measurement of 8-OH-dG content in both normal and stressed cells. Further, siRNA down-regulation of either GLS2 or p53 compromises the GSH-dependent antioxidant system and increases intracellular ROS levels. High ROS levels following GLS2 knockdown also coincide with stimulation of p53-induced cell death. We propose that GLS2 control of intracellular ROS levels and the apoptotic response facilitates the ability of p53 to protect cells from accumulation of genomic damage and allows cells to survive after mild and repairable genotoxic stress. Indeed, overexpression of GLS2 reduces the growth of tumor cells and colony formation. Further, compared with normal tissue, GLS2 expression is reduced in liver tumors. Thus, our results provide evidence for a unique metabolic role for p53, linking glutamine metabolism, energy, and ROS homeostasis, which may contribute to p53 tumor suppressor function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutaminolysis as a target for cancer therapy.

              Cancer cells display an altered metabolic circuitry that is directly regulated by oncogenic mutations and loss of tumor suppressors. Mounting evidence indicates that altered glutamine metabolism in cancer cells has critical roles in supporting macromolecule biosynthesis, regulating signaling pathways, and maintaining redox homeostasis, all of which contribute to cancer cell proliferation and survival. Thus, intervention in these metabolic processes could provide novel approaches to improve cancer treatment. This review summarizes current findings on the role of glutaminolytic enzymes in human cancers and provides an update on the development of small molecule inhibitors to target glutaminolysis for cancer therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                Elsevier
                2352-3964
                13 January 2017
                February 2017
                13 January 2017
                : 16
                : 292-301
                Affiliations
                [a ]School of Optometry, Indiana University, Bloomington, IN 47405, USA
                [b ]Department of Biology, Indiana University, Bloomington, IN 47405, USA
                [c ]Price Vision Group, Indianapolis, IN 46260, USA
                Author notes
                Article
                S2352-3964(17)30004-X
                10.1016/j.ebiom.2017.01.004
                5474426
                28117276
                1e945c24-9940-43c6-9ee5-73e3203d60a4
                © 2017 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 19 October 2016
                : 3 January 2017
                : 4 January 2017
                Categories
                Research Paper

                glutaminolysis,energy metabolism,corneal endothelium,slc4a11 ammonia transporter,congenital hereditary endothelial dystrophy (ched),fuchs' endothelial corneal dystrophy (fecd)

                Comments

                Comment on this article