13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The new-generation hormonal agent enzalutamide has been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC), in both post- and predocetaxel setting, due to the significant improvement in overall survival. More recently, enzalutamide also showed impressive results in the treatment of men with nonmetastatic CRPC. Unfortunately, not all patients with CRPC are responsive to enzalutamide, and even in responders, benefits are limited by the development of drug resistance. Adaptive resistance of metastatic prostate cancer to enzalutamide treatment can be due to the activation of both androgen receptor (AR)-dependent pathways (expression of constitutively active AR splice variants, AR point mutations, gene amplification and overexpression) and mechanisms independent of AR signaling pathway (altered steroidogenesis, upregulation of the glucocorticoid receptor, epithelial–mesenchymal transition, neuroendocrine transformation, autophagy and activation of the immune system). In this review, we focus on resistance mechanisms to enzalutamide, exploring how we could overcome them through novel therapeutic options.

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer

          Men with nonmetastatic, castration-resistant prostate cancer and a rapidly rising prostate-specific antigen (PSA) level are at high risk for metastasis. We hypothesized that enzalutamide, which prolongs overall survival among patients with metastatic, castration-resistant prostate cancer, would delay metastasis in men with nonmetastatic, castration-resistant prostate cancer and a rapidly rising PSA level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer.

            Androgen receptor (AR) plays a central role in prostate cancer, and most patients respond to androgen deprivation therapies, but they invariably relapse with a more aggressive prostate cancer that has been termed hormone refractory or androgen independent. To identify proteins that mediate this tumor progression, gene expression in 33 androgen-independent prostate cancer bone marrow metastases versus 22 laser capture-microdissected primary prostate cancers was compared using Affymetrix oligonucleotide microarrays. Multiple genes associated with aggressive behavior were increased in the androgen-independent metastatic tumors (MMP9, CKS2, LRRC15, WNT5A, EZH2, E2F3, SDC1, SKP2, and BIRC5), whereas a candidate tumor suppressor gene (KLF6) was decreased. Consistent with castrate androgen levels, androgen-regulated genes were reduced 2- to 3-fold in the androgen-independent tumors. Nonetheless, they were still major transcripts in these tumors, indicating that there was partial reactivation of AR transcriptional activity. This was associated with increased expression of AR (5.8-fold) and multiple genes mediating androgen metabolism (HSD3B2, AKR1C3, SRD5A1, AKR1C2, AKR1C1, and UGT2B15). The increase in aldo-keto reductase family 1, member C3 (AKR1C3), the prostatic enzyme that reduces adrenal androstenedione to testosterone, was confirmed by real-time reverse transcription-PCR and immunohistochemistry. These results indicate that enhanced intracellular conversion of adrenal androgens to testosterone and dihydrotestosterone is a mechanism by which prostate cancer cells adapt to androgen deprivation and suggest new therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Circulating Tumor DNA Genomics Correlate with Resistance to Abiraterone and Enzalutamide in Prostate Cancer

                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2018
                24 October 2018
                : 11
                : 7353-7368
                Affiliations
                [1 ]Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy, marcello.tucci@ 123456gmail.com
                [2 ]Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
                Author notes
                Correspondence: Marcello Tucci, Division of Medical Oncology, Department of Oncology, University of Turin at San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Torino 10043, Italy, Tel +39 11 902 6992, Email marcello.tucci@ 123456gmail.com
                [*]

                These authors contributed equally to this work

                Article
                ott-11-7353
                10.2147/OTT.S153764
                6204864
                30425524
                1e98fb47-6028-4f6f-af1e-a4f5628e77f3
                © 2018 Tucci et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Oncology & Radiotherapy
                prostate cancer,enzalutamide,hormonal treatment,mechanisms of resistance,castration-resistant prostate cancer,androgen receptor

                Comments

                Comment on this article