3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy.

      Analytical Chemistry
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stable, homogeneous, aqueous dispersions of single-walled carbon nanotubes (SWNTs) are prepared by nonspecific physical adsorption of surfactants enhanced by sonication. Upon centrifugation, supernatant and precipitate phases are obtained. The initial weights of the SWNTs and the surfactant are divided between these two phases, and the respective SWNT concentration in each phase is unknown. The focus of this work is on the determination of the true concentration of raw, exfoliated HiPCO SWNTs in the supernatant phase. A UV-visible absorption-based approach is suggested for a direct measurement of the SWNT and the surfactant concentration in the supernatant. UV-visible absorbance spectra of SWNTs-surfactant dispersions and surfactants alone reveal that the intensity of a certain peak, attributed to the pi-plasmon resonance absorption, is unaffected by the presence of most surfactants. A calibration plot is then made by monitoring the intensity of the peak as a function of the true concentration of the exfoliated SWNTs. Thus, we are able to determine the unknown concentration of surfactant-dispersed HiPCO SWNTs in the supernatant solution, simply by measuring its optical absorbance. Moreover, we can now calculate the surfactant efficiency in dispersing SWNTs. Cryogenic-transmission electron microscopy and thermogravimetric analysis techniques are used for the characterization of these dispersions and to complement the UV-visible measurements.

          Related collections

          Author and article information

          Journal
          17134145
          10.1021/ac060990s

          Comments

          Comment on this article

          scite_