58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer.

      Nature materials
      methods, Crystallization, Drug Delivery Systems, Interleukin-12, administration & dosage, Antineoplastic Agents, Humans, pathology, Pharmaceutical Vehicles, Breast Neoplasms, Cell Line, Tumor, Plasmids, Drug Combinations, genetics, Cations, Transfection, Paclitaxel, chemistry, drug therapy, Polymers, Absorbable Implants, Coated Materials, Biocompatible, Nanostructures

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-viral gene-delivery systems are safer to use and easier to produce than viral vectors, but their comparatively low transfection efficiency has limited their applications. Co-delivery of drugs and DNA has been proposed to enhance gene expression or to achieve the synergistic/combined effect of drug and gene therapies. Attempts have been made to deliver drugs and DNA simultaneously using liposomes. Here we report cationic core-shell nanoparticles that were self-assembled from a biodegradable amphiphilic copolymer. These nanoparticles offer advantages over liposomes, as they are easier to fabricate, and are more readily subject to modulation of their size and degree of positive charge. More importantly, they achieve high gene-transfection efficiency and the possibility of co-delivering drugs and genes to the same cells. Enhanced gene transfection with the co-delivery of paclitaxel has been demonstrated by in vitro and in vivo studies. In particular, the co-delivery of paclitaxel with an interleukin-12-encoded plasmid using these nanoparticles suppressed cancer growth more efficiently than the delivery of either paclitaxel or the plasmid in a 4T1 mouse breast cancer model. Moreover, the co-delivery of paclitaxel with Bcl-2-targeted small interfering RNA (siRNA) increased cytotoxicity in MDA-MB-231 human breast cancer cells.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis.

          A comparative in vitro cytotoxicity study with different water-soluble, cationic macromolecules which have been described as gene delivery systems was performed. Cytotoxicity in L929 mouse fibroblasts was monitored using the MTT assay and the release of the cytosolic enzyme lactate dehydrogenase (LDH). Microscopic observations were carried out as indicators for cell viability. Furthermore, hemolysis of erythrocytes was quantified spectrophotometrically. To determine the nature of cell death induced by the polycations, the nuclear morphology after DAPI staining and the inhibition of the toxic effects by the caspase inhibitor zVAD.fmk were investigated. All assays yielded comparable results and allowed the following ranking of the polymers with regard to cytotoxicity: Poly(ethylenimine)=poly(L-lysine)>poly(diallyl-dimethyl-ammonium chloride)>diethylaminoethyl-dextran>poly(vinyl pyridinium bromide)>Starburst dendrimer>cationized albumin>native albumin. The magnitude of the cytotoxic effects of all polymers were found to be time- and concentration dependent. The molecular weight as well as the cationic charge density of the polycations were confirmed as key parameters for the interaction with the cell membranes and consequently, the cell damage. Evaluating the nature of cell death induced by poly(ethylenimine), we did not detect any indication for apoptosis suggesting that the polymer induced a necrotic cell reaction. Cell nuclei retained their size, chromatin was homogenously distributed and cell membranes lost their integrity very rapidly at an early stage. Furthermore, the broad spectrum caspase inhibitor zVAD.fmk did not inhibit poly(ethylenimine)-induced cell damage. Insights into the structure-toxicity relationship are necessary to optimize the cytotoxicity and biocompatibility of non-viral gene delivery systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic DNA delivery systems.

            The ability to safely and efficiently transfer foreign DNA into cells is a fundamental goal in biotechnology. Toward this end, rapid advances have recently been made in our understanding of mechanisms for DNA stability and transport within cells. Current synthetic DNA delivery systems are versatile and safe, but substantially less efficient than viruses. Indeed, most current systems address only one of the obstacles to DNA delivery by enhancing DNA uptake. In fact, the effectiveness of gene expression is also dependent on several additional factors, including the release of intracellular DNA, stability of DNA in the cytoplasm, unpackaging of the DNA-vector complex, and the targeting of DNA to the nucleus. Delivery systems of the future must fully accommodate all these processes to effectively shepherd DNA across the plasma membrane, through the hostile intracellular environment, and into the nucleus.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Py scale of solvent polarities

                Bookmark

                Author and article information

                Comments

                Comment on this article