20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Snake venom evolution is typically considered to be predominantly driven by diet-related selection pressures. Most evidence for this is based on lethality to prey and non-prey species and on the identification of prey specific toxins. Since the broad toxicological activities (e.g., neurotoxicity, coagulotoxicity, etc.) sit at the interface between molecular toxinology and lethality, these classes of activity may act as a key mediator in coevolutionary interactions between snakes and their prey. Indeed, some recent work has suggested that variation in these functional activities may be related to diet as well, but previous studies have been limited in geographic and/or taxonomic scope. In this paper, we take a phylogenetic comparative approach to investigate relationships between diet and toxicological activity classes on a global scale across caenophidian snakes, using the clinically oriented database at toxinology.com. We generally find little support for specific prey types selecting for particular toxicological effects except that reptile-feeders are more likely to be neurotoxic. We find some support for endothermic prey (with higher metabolic rates) influencing toxic activities, but differently from previous suggestions in the literature. More broadly, we find strong support for a general effect of increased diversity of prey on the diversity of toxicological effects of snake venom. Hence, we provide evidence that selection pressures on the toxicological activities of snake venom has largely been driven by prey diversity rather than specific types of prey. These results complement and extend previous work to suggest that specific matching of venom characteristics to prey may occur at the molecular level and translate into venom lethality, but the functional link between those two is not constrained to a particular toxicological route.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Complex cocktails: the evolutionary novelty of venoms.

          Venoms have evolved on numerous occasions throughout the animal kingdom. These 'biochemical weapon systems' typically function to facilitate, or protect the producing animal from, predation. Most venomous animals remain unstudied despite venoms providing model systems for investigating predator-prey interactions, molecular evolution, functional convergence, and novel targets for pharmaceutical discovery. Through advances in 'omic' technologies, venom composition data have recently become available for several venomous lineages, revealing considerable complexity in the processes responsible for generating the genetic and functional diversity observed in many venoms. Here, we review these recent advances and highlight the ecological and evolutionary novelty of venom systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Snakebite envenoming

            Snakebite envenoming is a neglected tropical disease that kills >100,000 people and maims >400,000 people every year. Impoverished populations living in the rural tropics are particularly vulnerable; snakebite envenoming perpetuates the cycle of poverty. Snake venoms are complex mixtures of proteins that exert a wide range of toxic actions. The high variability in snake venom composition is responsible for the various clinical manifestations in envenomings, ranging from local tissue damage to potentially life-threatening systemic effects. Intravenous administration of antivenom is the only specific treatment to counteract envenoming. Analgesics, ventilator support, fluid therapy, haemodialysis and antibiotic therapy are also used. Novel therapeutic alternatives based on recombinant antibody technologies and new toxin inhibitors are being explored. Confronting snakebite envenoming at a global level demands the implementation of an integrated intervention strategy involving the WHO, the research community, antivenom manufacturers, regulatory agencies, national and regional health authorities, professional health organizations, international funding agencies, advocacy groups and civil society institutions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Niche breadth predicts geographical range size: a general ecological pattern.

              The range of resources that a species uses (i.e. its niche breadth) might determine the geographical area it can occupy, but consensus on whether a niche breadth-range size relationship generally exists among species has been slow to emerge. The validity of this hypothesis is a key question in ecology in that it proposes a mechanism for commonness and rarity, and if true, may help predict species' vulnerability to extinction. We identified 64 studies that measured niche breadth and range size, and we used a meta-analytic approach to test for the presence of a niche breadth-range size relationship. We found a significant positive relationship between range size and environmental tolerance breadth (z = 0.49), habitat breadth (z = 0.45), and diet breadth (z = 0.28). The overall positive effect persisted even when incorporating sampling effects. Despite significant variability in the strength of the relationship among studies, the general positive relationship suggests that specialist species might be disproportionately vulnerable to habitat loss and climate change due to synergistic effects of a narrow niche and small range size. An understanding of the ecological and evolutionary mechanisms that drive and cause deviations from this niche breadth-range size pattern is an important future research goal. © 2013 John Wiley & Sons Ltd/CNRS.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                06 December 2019
                December 2019
                : 11
                : 12
                : 711
                Affiliations
                Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK; eldavies94@ 123456outlook.com
                Author notes
                Author information
                https://orcid.org/0000-0002-9171-5874
                Article
                toxins-11-00711
                10.3390/toxins11120711
                6950196
                31817769
                1ea5f04c-fe42-47fb-8f1e-42f637e4a6b9
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 September 2019
                : 04 December 2019
                Categories
                Article

                Molecular medicine
                evolution,ecology,prey diversity,predator-prey coevolution,neurotoxicity,coagulotoxicity,cytotoxicity,nephrotoxicity

                Comments

                Comment on this article